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 Path planning is crucial for a robot to be able to reach a target point safely to 

accomplish a given mission. In path planning, three essential criteria have to 

be considered namely path length, computational complexity and 

completeness. Among established path planning methods are voronoi 

diagram (VD), cell decomposition (CD), probability roadmap (PRM), 

visibility graph (VG) and potential field (PF). The above-mentioned methods 

could not fulfill all three criteria simultaneously which limits their 

application in optimal and real-time path planning. This paper proposes a 

path PF-based planning algorithm called dynamic artificial PF (DAPF). The 

proposed algorithm is capable of eliminating the local minima that frequently 

occurs in the conventional PF while fulfilling the criterion of path planning. 

DAPF also integrates path pruning to shorten the planned path. In order to 

evaluate its performance, DAPF has been simulated and compared with VG 

in terms of path length and computational complexity. It is found that DAPF 

is consistent in generating paths with low computation time in obstacle-rich 

environments compared to VG. The paths produced also are nearly optimal 

with respect to VG. 
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1. INTRODUCTION  

Path planning is among the important aspects that need to be considered in enhancing robot 

autonomy level [1], [2]. In robotics, path planning is the task of finding a collision-free and feasible path for a 

robot to traverse from an initial point to a target point. The path planning problem concentrates on three 

criteria; computational time, optimal path and completeness [3]. Computation time relates exponentially to 

the number of degrees of freedom of the robot and is affected by the number of obstacles in the environment. 

An optimal path, which is referred to a shortest distance from the starting point to the target point, is essential 

to minimize the energy consumption and time needed for the robot to accomplish its mission. Finally, 

completeness means that the robot can to produce a path if one exists [4]. Once a robot is required to move 

from a starting point to a target point, the robot needs to produce the shortest path to reach the target safely 

with low computational time. In a real-time applications, low computation time is vital.  

There are several popular methods used for path planning such as voronoi diagram (VD), cell 

decomposition (CD), visibility graph (VG), and artificial potential field (APF) to name a few [5]-[13]. CD is 

commonly used in outdoor scenarios. This method introduces the configuration space (C-Space) by a simple 
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and connected region named cells. These cells are discrete and do not overlap with each other in the region, 

but each cell is adjacent to one another. A connectivity graph is then developed and a graph search algorithm 

is consequently used to generate a path. A larger cell size makes the path sub-optimal, whereas a smaller size 

will increase its computational time [14]. 

VD defines nodes that are equidistant from all the nearest obstacles in C-Space. This method is 

capable in generating a safe path with a low risk of local minima due to the edges of the path being located 

quite far from the obstacles. However, VD is incompetent to yield an optimal path [5]. VG is capable of 

producing an optimal path without possibilities of local minima, which is easy to implement. The generated 

path is optimal, but its computation time increases as the number of obstacles in C-Space increases [15]-[17]. 

As for PF, it is simple, fast and highly safe [18]-[20]. PF generates two kinds of forces. The 

attractive force created by the target point pulls the robot to it; whilst the obstacles generate a repulsive force 

that keeps the robot from it. The robot direction was determined by the total force. PF is ideal for real-time 

environments since this method produces a single path with low computation time [21]. However, PF has a 

significant drawback known as local minima that causes the robot unable in producing a path. 

Due to the above-mentioned advantages of PF, this paper proposes a PF-based path planning 

algorithm called dynamic artificial potential field (DAPF) that successfully eliminates the local minima 

problem and is able to generate a sub-optimal and collision-free path in obstacle-rich environments with low 

computation time. In order to further improve the planned path optimality, the path pruning technique is 

applied. A simulation has been conducted to evaluate the capabilities of DAPF and VG in various scenarios 

in terms of computation time and path length. 

 

 

2. OVERVIEW OF POTENTIAL FIELD 

Artificial potential field (APF) is one of the most common path planning techniques. It is based on 

the idea of two forms of forces called attractive force and repulsive force. Many researchers have utilized this 

method due to its characteristics such as elegant, safe and simple [22]. APF was first proposed by Khatib in [23] 

where the robot is seen as a point influenced by fields created by the starting point, target point and obstacles 

within the search space. The target point generates an attractive force, while the starting point and obstacles 

generate a repulsive force.  

APF technique has benefits like real-time path planning application due to its; i) low computational 

time, and ii) capability to produce a collision-free path. On the other hand, the technique suffered from its 

main disadvantages including local minima, goal not-reachable problem, and narrow passages [24], [25]. A 

number of researchers have implemented the APF technique for path planning. Li et al. proposed a PF and 

regression search path planning method for the robot. It was claimed to effectively generate a global sub-

optimal/optimal path and minimize local minima and oscillation problems in a known environment with 

incomplete information [26]. Sfeir et al. Performed real-time mobile robot navigation in an unknown 

environment based on improved APF technique to develop a steady trajectory around the obstacles by 

evolving integration of rotational force [27]. The present technique efficaciously avoided the hindrance in 

APF due to goal non-reachable when obstacles are nearby (GNRON) problem. Research by Park et al. 

presented a potential field method and vector field histogram (VFH) to overtake the PF barriers by creating a 

new obstacle avoidance method for mobile robots based on advanced fuzzy PFM (AFPFM) [28].  

Lifen et al. enhanced the APF by replacing the repulsive potential function that assists an unmanned 

aerial vehicle (UAV) in generating an optimal path while avoiding collision with obstacles [20]. Li et al. 

proposed an improved APF in robot path planning, which reconsidered the potential function to compute a 

legitimate path and therefore minimalize the length of the generated path [29]. Debnath et al. have described 

the APF as practical to produce a terser path [30]. 

 

 

3. POTENTIAL FIELDS METHOD FOR PATH PLANNING 

3.1.  Field function based on traditional PF 

The potential field method produces two kinds of force; the attractive force and the repulsive force. 

The target point generates an attractive force by pulling the robot close to it. In the meantime, the repulsive 

force is generated by the obstacle and the starting point to repel the robot away from it. The resultant total 

force will generate the path for the robot. The attractive potential field, 𝑉𝑔 at target point is defined as (1). 

 

𝑉𝑔 = 𝐾𝑔𝑟𝑔 (1) 

 

Where 𝐾𝑔 is the attractive gain that is is equal to or greater than zero and 𝑟𝑔 is the distance between the 

present robot position and the goal.  
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The repulsive potential field, 𝑉𝑜 produced at obstacle can be represented as (2). 

 

𝑉𝑜 =
𝐾𝑜

𝑟𝑜
 (2) 

 

Where 𝐾𝑜 is the repulsive gain at obstacle which is larger than zero and 𝑟𝑜 is the distance from the robot. The 

repulsive potential field, 𝑉𝑟  generated by the starting point can be written as (3). 

 

𝑉𝑟 =
𝐾𝑟

𝑟𝑟
 (3) 

 

Where 𝐾𝑟  is the repulsive gain at starting point that is equal to or greater than zero and 𝑟𝑟  is the distance 

between the present robot position and the starting point. Thus, the total potential field can be written as in (4). 

The potential fields are illustrated in Figure 1(a)-(c) [13]. 

 

𝑉𝑡𝑜𝑡𝑎𝑙 =  𝑉𝑔 + 𝑉𝑟 + 𝑉𝑜 (4) 

 
 

 
(a) 

 
(b) 

 
(c) 

 

Figure 1. These figures are; (a) the attractive potential generated by the target point; (b) the repulsive 

potential generated by the obstacle and starting point; (c) the resulting potential fields 

 

 

3.2.  The proposed algorithm 

3.2.1. Parameters setting  

In this paper, we propose a path planning algorithm based on PF called dynamic artificial PF 

(DAPF). In DAPF, there are some important parameters namely sampling distance 𝑑ℎ and the number of 

discrete points 𝑝 along the perimeter of an obstacle that will determine the computation time of the 

algorithm. These parameters have to be set adequately in order to minimize the computation time while 

guaranteeing the path is collision-free. As such, the parameter values are dynamic depending on the scenario 

in which the path planning takes place. Through simulations, 𝑑ℎ and 𝑝 can be found from the (5), (6). 

 

𝑑ℎ =  
0.085 × 𝑂

3500
 (5) 

 

𝑝 = (𝑝 × 4) − 4 (6) 

 

𝑂 in (5) represents the obstacle number in a scenario. In PF, a two-dimensional mesh in 𝑥 and 𝑦 

axes that covers the entire search space has to be created first. The mesh consists of smaller grid lines whose 

number is determined by 𝑑ℎ and the range of the search space XY. The smaller the value of 𝑑ℎ, the higher the 

number of grid lines, which will increase the computation time. Hence a suitable 𝑑ℎ value has to be set 

adequately. By making the mesh size dynamics, the computation time could be improved, especially in a 

non-obstacle-rich environment to generate a free-collision path. As for the attractive gain at the target point, 

 

𝐾𝑔 =
0.8

√(𝑋)2+(𝑌)2
 (7) 

 

where 𝑋 and 𝑌 represent the ranges of the search along 𝑥 and 𝑦 axes, respectively. Contrarily, the repulsive 

gain at the obstacle, 𝐾𝑜 and the repulsive gain at the starting point, 𝐾𝑟  are stated as (8), (9). 

 

𝐾𝑜 =
√(𝑋)2+(𝑌)2

(𝑝 ×𝑜)
 (8) 
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𝐾𝑟 = 10 ×  𝑑ℎ (9) 
 

𝐾𝑜 is determined referred on the surrounding dimension (search space diagonal distance) and the sum of 

obstacles, meanwhile 𝐾𝑟  is a function of dh. 

 

3.2.2. The algorithm 

In DAPF, the potential field 𝑉𝑡𝑜𝑡𝑎𝑙 is first generated using equations derived in Sections 3.1. Next, 

the initial point 𝑥𝑖  is set to the starting point 𝑥𝑆. Consequently, the robot starts to maneuver from 𝑥𝑖  to the 

subsequent point 𝑥𝑙  by identifying and selecting the lowest point out of eight surrounding points produced by 

the potential field. It will then move to 𝑥𝑙  once the lowest point has been selected. If the point is a local 

minima, the next lowest point will be identified. This process is repeated until 𝑥𝑙  is no longer a local minima 

and 𝑥𝑖  is then updated to 𝑥𝑙 . The process repeats until 𝑥𝑖 =  𝑥𝑇  (target point). The pseudocode of the DAPF 

algorithm is presented in Figure 2 and the flowchart of the DAPF algorithm is shown in Figure 3. The 

proposed DAPF is capable of eliminating the local minima problem, oscillation, goal non-reachable problem, 

and narrow passages. Besides that, it can also produce a path with low computation time so that the robot can 

be deployed in a real-time mission. 
 

 

 
 

Figure 2. DAPF algorithm 
 
 

 
 

Figure 3. The flowchart of DAPF 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 6, December 2021 :  4840 - 4849 

4844 

3.3.  Path pruning  

After a path has been generated by DAPF, the path can normally be shortened by passing the areas 

with high potential values avoiding all the obstacles. Therefore, a path pruning method is applied and its 

algorithm is shown in Figures 4 and 5. Path pruning makes the robot to be able to perform the mission with a 

shorter path and hence saves its energy.  

A path is a series of waypoints that consists of {p𝑖, p𝑖+1, p𝑖+2, … p𝑛} where p𝑖 is the starting point 

and p𝑛 is the target point. The pruning procedure begins with scanning the obstacles between p𝑖 and p𝑖+j. If 

there is no obstacle between p𝑖 and p𝑖+j, the algorithm will eliminate p𝑖+j-1 from W and the value j is updated 

to j+1. On the other hand, if there are obstacles between p𝑖 and p𝑖+j, p𝑖 is then updated to p𝑖+j-1 and j=j+1, 

and the algorithm continues to scan obstacles between the updated p𝑖 and p𝑖+j. The process ends if p𝑖 = p𝑛.  

 
 

 
 

Figure 4. The pseudocode for path pruning 
 

 

 
 

Figure 5. Flowchart for path pruning 
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4. SIMULATION RESULTS AND DISCUSSION 

4.1.  Computation time of DAPF and VG 

A simulation has been performed to assess the performance of the proposed DAPF from the aspect 

of computation time and path length in random scenarios with a variety number of obstacles. Besides that, a 

simulation of VG has also been done in identical scenarios to compare its performance against DAPF. The 

simulation of both methods has been executed in 100 random scenarios with varied obstacles number 

between 10 to 200. It has successfully been implemented using MATLAB R2016a on a PC with Intel i5-

4200U 1.6 GHz CPU and Windows 10 OS. The ranges of 𝑋 and 𝑌 were set to 750 units. Figure 6 shows the 

simulation in terms of computation time for DAPF and VG methods. It also shows the result of minimum, 

average and maximum computation time against the number of obstacles for the DAPF and VG methods. 

From Figure 6, it can be observed that the computation time of both DAPF and VG methods were 

exponentially increased but at a different pace. According to Figure 6(a), with 70 obstacles (green line) in the 

scenario, it shows that the computation time increases due to local minima. The algorithm took time to 

eliminate the problems and replanned a new path. Figure 6(b) shows a fluctuated computation times but it 

seems intangible. VG method resulted in low computation time at 5 s for a number of obstacles below 80. 

Between 100 and 200 obstacles, the computation time of VG was between 7 s to 32 s. Meanwhile, the 

computation time for the DAPF method for all scenarios was below 7 s. 

Table 1 shows the result of minimum, average and maximum computation time of DAPF and VG in 

environments with 50, 100, 150 and 200 obstacles, each generated in 100 random scenarios. The computation 

time of the two methods in finding a collision-free path increased with the increment of the number of 

obstacles. From Table 1, DAPF produced relatively shorter computation times in all scenarios. The 

computation times for DAPF were slightly increased in scenarios with 50 and 200 obstacles with average of 

0.34 and 6.15 seconds, respectively. However, the increment of computation time of VG in environments 

with 50 and 200 obstacles was abrupt with an average of 1.58 and 31.23 seconds, respectively. Note that, 

throughout the simulation, there was no single occasion that the algorithm failed to plan a path. It proves that 

the algorithm is complete, i.e., manages to find a path if one exists. 

 

 

 
(a) 

 
(b) 

 

Figure 6. Computation time with 10 to 200 various obstacles numbers; (a) DAPF, (b) VG 

 

 

4.2.  The effect of path pruning in DAPF  

Figures 7(a) and (b) show the path lengths produced by VG and DAPF, respectively. It is worth to 

note that in the simulations, path pruning has not been implemented in DAPF. From the figure, it can be seen 

that the resulting minimum, average, and maximum path lengths of DAPF are slightly longer than those of VG. 

From Figure 7(a), it can be seen that the results of minimum, average and maximum path length were 

identical. In 40 obstacles environments, the resulting path was 1339 units. The graph fluctuates drastically as 

a result of local minima problems. The robot needed to remove the local minima points and find a new lowest 

point surrounding it to reach the target point. This process results in a longer path length. Based on  

Figure 7(b), the path length produced by the VG method increased consistently. VG produced an optimal 

path length compared to DAPF. Table 2 illustrates the path length by both methods in scenarios with 50, 100, 

150 and 200 obstacles. Compared with VG, the path generated by the DAPF method was 83.4% of the 

optimum length in the environment with 50 obstacles, 88.3% in 100 obstacles, 87.6% in 150 obstacles and 

89.5% in 200 obstacles. 
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Table 1. Computation time in environments with 50, 

100, 150 and 200 obstacles 
Number of 
Obstacle 

Method Computation time (s) 
Min Ave Max 

50 DAPF 

VG 

0.32 

1.54 

0.34 

1.58 

0.39 

1.76 

100 DAPF 
VG 

0.96 
7.73 

0.99 
7.82 

1.04 
8.30 

150 DAPF 

VG 

2.18 

17.22 

2.25 

17.39 

2.42 

17.78 
200 DAPF 

VG 

6.05 

30.93 

6.15 

31.23 

6.43 

32.25 
 

Table 2. Lengths of the paths produced by DAPF 

and VG 
Number of 
Obstacle 

Method 
Path length 

(unit) 

50 DAPF 

VG 

1214.7 

1065.2 

100 DAPF 
VG 

1195.4 
1070.5 

150 DAPF 

VG 

1209.5 

1076 
200 DAPF 

VG 

1208.4 

1094 
 

 

 

Figure 8 illustrates the path lengths produced by DAPF with path pruning and VG. DAPF with path 

pruning was found to have a shorter path compared to those without path pruning. From Figure 8(a), with 40 

obstacles, the produced path length was 1140 units. It proved that DAPF with pruning could generate a 

shorter path although needed to encounter the local minima problems. Table 3 shows the resulting pruned 

path length of DAPF. DAPF with path pruning technique successfully generated shorter paths with greater 

than 96% of those planned by VG in all scenarios with obstacles number between 50 and 200. The 

comparison of path lengths of DAPF with and without pruning is depicted in Figure 9.  

From Figure 9, DAPF with pruning yielded shorter paths for the entire scenarios as mentioned in 

Table 3 compared to DAPF without pruning in Table 2. DAPF with path pruning has been successfully 

proven to produce a shorter path by an average of 10% compared to DAPF without path pruning. This is 

important in saving the robot energy as the robot traverses the path. 

 

 

 
(a) 

 
(b) 

 

Figure 7. Path length generated by; (a) DAPF and (b) VG  
 

 

 
(a) 

 
(b) 

 

Figure 8. Path length generated by; (a) DAPF with path pruning and (b) VG  
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Table 3. Lengths of planned pruned path for dynamic PF and VG 
Number of Obstacle Method Pruned Path length (unit) 

50 DAPF 

VG 

1099.1 

1065.2 
100 DAPF 

VG 

1121.4 

1070.5 

150 DAPF 
VG 

1127.2 
1076 

200 DAPF 

VG 

1129.8 

1094 

 

 

 
 

Figure 9. Comparison of DAPF path length with and without path pruning 

 

 

4. CONCLUSION  

In this paper, dynamic artificial potential field (DAPF) with path pruning method has been proposed 

for robot path planning in known environments. The proposed algorithm has successfully overcome the local 

minima problems of conventional PF. The algorithm is also capable of producing a path with low 

computation time in obstacle-rich environments, as it is crucial for real-time path planning applications. 

DAPF has also been validated to produce paths with shorter lengths, which is close to 95% of those produced 

by the visibility graph (VG) method. Besides that, DAPF has also been proven to be complete. Therefore, the 

proposed algorithm fulfills the criterion of path planning. 
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