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 SNOW 3G is a synchronous, word-oriented stream cipher used by the 3GPP 

standards as a confidentiality and integrity algorithms. It is used as first set  

in long term evolution (LTE) and as a second set in universal mobile 

telecommunications system (UMTS) networks.  The cipher uses 128-bit key 

and 128 bit IV to produce 32-bit ciphertext. The paper presents two 

techniques for performance enhancement. The first technique uses novel 

CLA architecture to minimize the propagation delay of the 232 modulo 

adders. The second technique uses novel architecture for S-box to minimize 

the chip area. The presented work uses VHDL language for coding.  

The same is implemented on the FPGA device Virtex xc5vfx100e 

manufactured by Xilinx. The presented architecture achieved a maximum 

frequency of 254.9 MHz and throughput of 7.2235 Gbps.  
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1. INTRODUCTION  

Security of the records is important in the systems where personal and financial matters are 

involved. Hiding of information from unauthorized users becomes essential in such systems and services. 

Cryptography is one of the widely used techniques for securing information from eavesdroppers. Considering 

the need to secure information many researchers are working in the area of information security. To maintain 

advanced network security, the concern network architecture must change from traditional security to 

advanced security. The same may be achieved by sinking holes in the security wall. 

Cryptography algorithms and their associated key are more secure when it is implemented on  

a hardware platform [1]. Side-channel attacks and fault attacks may exist. However, developed algorithms 

must be fast enough to support autonomous protocols. These protocols use different encryption algorithms 

for a different session. Many recent autonomous protocols like secure sockets layer (SSL) and internet 

protocol security (IPsec) use different ciphers for different sessions.  

Hardware implementation of the cryptographic algorithm on FPGA devices is attractive solutions 

because FPGAs are reconfigurable [2-8]. This property provides flexibility for dynamic system development 

and capable of implementing a wide range of functions/architectures/algorithms. It seems to be significant to 

emphasize FPGA based implementations of cryptographic algorithms, especially high throughput 

architectures [9]. SNOW 3G algorithm is the core of the 3rd generation partnership project (3GPP) 

algorithms UEA2 and UIA2. The 3GPP is a joint attempt between telecommunication associations (TG) to 

make globally applicable specifications for long term evolution (LTE) mobile phone systems [10, 11].   

https://creativecommons.org/licenses/by-sa/4.0/
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The presented work uses optimized architecture for SNOW 3G stream cipher. This architecture 

requires only 2K bytes of memory for implementation of S-box in place of 8K bytes of memory required for 

the existing SNOW 3G architectures [10-16]. The paper is arranged in the following sections. Section-2 

provides initial versions of SNOW stream cipher [17]. Section-3 provides the working and design parameters 

of the SNOW 3G algorithm. Section-4 lists existing work related to presented techniques. Section-5 presents 

optimized SNOW 3G architecture and its analysis. The results are discussed in Section-6 and Section-7 

concludes the presented work. 

 

 

2. INITIAL VERSIONS OF SNOW 

The researcher Patrik Ekdahl et. al. proposed a stream cipher SNOW (SNOW 1.0) in the year  

2000 [18], after two years Hawkes et. al. described a new attack known as a guess-and-determine attack [19] 

on SNOW 1.0. SNOW 1.0 has two limitations. The first limitation was finite state machine (FSM) has  

a single input, which allows the attacker to disturb the working procedure in FSM and second SNOW 1.0 was 

little unlucky in choosing feedback polynomial. This allows creating bitwise correspondence in FSM and 

which is the base of distinguishing attack. 

Patrik Ekdahl et. al. the proposed a new version of SNOW cipher as SNOW 2.0 [20] with 

modifications in SNOW 1.0 [18]. They provided two inputs to FSM and modified feedback polynomial in  

the new version SNOW 2.0. The two inputs to FSM in SNOW 2.0 makes the guess-and-determine attack 

more difficult because FSM update registers R1 and R2 do not depend only on FSM output. The polynomial 

selection in SNOW 1.0 was made to speed up the multiplication by left shift operation in LFSR. This allows 

the result of multiplication to appear at many places as a bit shifted version of the original word. Such  

a selection of polynomial provides a base for correlation attack in the initial version [18]. SNOW 2.0 

provides better distribution of the bits in feedback function by defining field (F_2^32) as an extension over 

the field (F_2^8). Each multiplication was implemented as shifting the content by one byte and unconditional 

XOR with 256 possible patterns. So SNOW 2.0 [20] is strong against correlation attack as compared to Snow 

1.0 [18]. During the evaluation of The European Telecommunications Standards Institute (ETSI)/Security 

Algorithms Group of Experts (SAGE), the SNOW 2.0 was further modified to increase its resistance against 

algebraic attacks and the new design named as SNOW 3G [10]. 

 

 

3. SPECIFICATIONS AND WORKING OF SNOW 3G 

SNOW 3G generates a 32-bit ciphertext per clock cycle with the help of a 128-bit key and 128-bit 

initialization vector (IV) as shown in Figure 1. It consists of the main four modules initial operations,  

linear feedback shift register (LFSR), finite state machine (FSM), and a feedback path. The initial operations 

will divide 128 bit Key into four blocks as per equations (01), (02), (03), and (04). Similarly, it also divides 

128 bit IV into four blocks as per equations (05), (06), (07), and (08) [10]. 

 

𝐾3 = 𝑘[0] ‖ 𝑘[1] ‖ 𝑘[2] ‖ … ‖ 𝑘[31] (1) 

 

𝐾2 = 𝑘[32] ‖ 𝑘[33] ‖ 𝑘[34] ‖ … ‖ 𝑘[63] (2) 

 

𝐾1 = 𝑘[64] ‖ 𝑘[65] ‖ 𝑘[66] ‖ … ‖ 𝑘[95] (3) 

 

𝐾0 = 𝑘[96] ‖ 𝑘[97] ‖ 𝑘[98] ‖ … ‖ 𝑘[127] (4) 

 

𝐼𝑉3 = 𝑖𝑣[0] ‖ 𝑖𝑣[1] ‖ 𝑖𝑣[2] ‖ … ‖ 𝑖𝑣[31] (5) 

 

𝐼𝑉2 = 𝑖𝑣[32] ‖ 𝑖𝑣[33] ‖ 𝑖𝑣[34] ‖ … ‖ 𝑖𝑣[63] (6) 

 

𝐼𝑉1 = 𝑖𝑣[64] ‖ 𝑖𝑣[65] ‖ 𝑖𝑣[66] ‖ … ‖ 𝑖𝑣[95] (7) 

 

𝐼𝑉0 = 𝑖𝑣[96] ‖ 𝑖𝑣[97] ‖ 𝑖𝑣[98] ‖ … ‖ 𝑖𝑣[127] (8) 

 

where 𝑘[0], 𝑖𝑣[0] are LSB part and 𝑘[127], 𝑖𝑣[127] are MSB part of the key and IV respectively. 

Initial operations are performed on key and iv as per Table 1. The output of the initial operations 

block is loaded into LFSR before the first clock cycle [10]. The second module LFSR consists of sixteen 

stages each having parallel 32 bits. Contents of LFSR are shifted from MSB (S15) to LSB (S0) in each clock 

cycle. S15 receives new value from the feedback path at each clock cycle. Third module FSM consists of 
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three parallel 32-bit update registers R1, R2, R3, two S-Boxes S1, S2 each of 4Kbytes, two 32 bit modulo 

adders and two 32 bit XOR gates. The final module is the feedback path which consists of functions MULα, 

DIVα, and many XOR operations. The two functions MULα and DIVα are implemented as lookup tables. 
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Figure 1. Existing SNOW 3G architectures 
 

 

Table 1. LFSR initialization calculations 
𝑆0 = 𝐾0 ⊕ 1 𝑆4 = 𝐾0 𝑆8 = 𝐾0 ⊕ 1 𝑆12 = 𝐾0 ⊕ 𝐼𝑉1 

𝑆1 = 𝐾1 ⊕ 1 𝑆5 = 𝐾1 𝑆9 = 𝐾1 ⊕ 1 ⊕ 𝐼𝑉3 𝑆13 = 𝐾1 

𝑆2 = 𝐾2 ⊕ 1 𝑆6 = 𝐾2 𝑆10 = 𝐾2 ⊕ 1 ⊕ 𝐼𝑉2 𝑆14 = 𝐾2 

𝑆3 = 𝐾3 ⊕ 1 𝑆7 = 𝐾3 𝑆11 = 𝐾3 ⊕ 1 𝑆15 = 𝐾3 ⊕ 𝐼𝑉0 

 

 

SNOW 3G works into two modes of operation, initialization mode and keystream mode. At the start 

of initialization, the model system should reset LFSR and FSM using terminals Rst1 and Rst2 respectively. 

In the first clock cycle values calculated in the initialization, a mode is loaded into sixteen stages of LFSR but 

FSM registers should remain in a reset state. In the second clock cycle, Rst2=0 and now LFSR is clocked.  

At each clock, 32-bit output F of FSM is combined with S0, S2 & S11 in the feedback path by selecting 

mode 0 from a select line of the multiplexer and applied to S15 as intermediate signal v. The following 

equation provides the intermediate signal v in the initialization mode [10]. 
 

𝑣 = (𝑆0,1‖𝑆0,2‖𝑆0,3‖0𝑥00) ⊕ 𝑀𝑈𝐿𝛼(𝑆0,0) ⊕ S2 ⊕ (0𝑥00‖𝑆11,0‖𝑆11,1‖𝑆11,2) ⊕
𝐷𝐼𝑉𝛼(𝑆11,3) ⊕ F  (9) 
 

After 32 clock cycles, SNOW 3G enters into keystream mode. Operations in this mode are the same 

as initialization mode but the only difference is that output F of FSM is not combined in feedback path by 

making mode = 1 from the multiplexer. The intermediate signal in keystream mode is given by the following 

equation [10].  
 

𝑣 = (𝑆0,1‖ 𝑆0,2‖𝑆0,3‖0𝑥00) ⊕ 𝑀𝑈𝐿𝛼(𝑆0,0) ⊕ S2 ⊕ (0𝑥00‖𝑆11,0‖𝑆11,1‖𝑆11,2) ⊕
𝐷𝐼𝑉𝛼(𝑆11,3) (10) 

 

In keystream mode, FSM is clocked for one clock cycle and its first output is discarded when it is clocked for 

n clock cycles to encrypt n number of 32-bit words, where n = number of 32-bit data words is to be  

encrypted [10]. 
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4. RELATED WORK 

The study of existing architectures of SNOW 3G evolved two challenges. One minimizing 

propagation delay of the 232 modulo adders and other is minimizing the chip area of S-boxes.  The researcher 

Kitsos et al. [12] realized S-boxes using 8 lookup tables. Each lookup table consumes 1 KB memory,  

so memory used for S-box realization is 8 KB. Jairaj et al. used symmetry of S-box lookup tables to 

minimize cache requirement in the software implementation of SNOW 3G [21]. Kitsos et al. [12] used 

conventional CLA for modulo adder implementation. The researcher Pai and Chen [22] presented  

a modified CLA design to minimize the propagation delay. Traboulsi et al. [23] implemented SNOW 3G on 

an embedded platform. The motive of the design was to minimize the memory required for S-box 

implementation. Researchers used 2 lookup tables in place of 8 lookup tables for implementation of  

2 S-boxes. Eight-bit shifting with cache memory is used efficiently to minimize memory requirement.  

 

 

5. PRESENTED SNOW 3G ARCHITECTURE 

Considering the challenges of existing FSM, the proposed implementation uses the following 

refinements to improve the performance of the SNOW 3G algorithm.  

- Use of novel modulo CLA architecture over 232 to minimize propagation delay in FSM, which decides  

the critical delay of the algorithm 

- Use of novel S-Box architecture to minimize chip area   

 

5.1.  Novel modulo CLA architecture over 232   
Modulo adders are usually implemented by using ripple-carry adders, but this technique increases 

the propagation delay of the critical path. The propagation delay of n bit ripple carries adder is (2n+1) gate 

delays. Modulo adder over 232 implemented by using ripple-carry adders will have delay of  

(2*32+1 = 65) 65 gates delay, assuming average gate delay of 10 ηs the total delay of one modulo adder will 

be 65*10 = 650 ηs. FSM consists of two such adders so a total delay of modulo adders for single 

computation will be 1300 ηs.  

The propagation delay of modulo adders can be minimized by using CLA for its implementation. 

Existing CLAs are realized by using basic gates i.e. AND, XOR, and OR gates, but Pai et al. realized CLA 

by using universal gates i.e. NAND or NOR gates [22]. The same design minimized gate requirement as 

compared to existing architectures. At the same time, this CLA [22, 24] designs are faster than conventional 

CLA architectures. Adder architecture [25] developed for LILI-II cipher uses different approach for 

addiation.    

Reduction in propagation delay and chip area is possible in existing architectures [12-16, 22],  

so the presented research work uses universal gates for CLA implementation and other techniques to 

minimize the number of gates required. Novel modulo CLA architecture over 232 uses following three 

architectures in multilevel CLA designs for performance improvement   

- 4 bit CLA at LSB (to calculate S0 to S3) 

- 4 bit CLA at middle stages (to calculate S4 to S27)  

- 4 bit CLA at MSB (to calculate S28 to S31) 

Using the above CLA architectures novel architecture for modulo CLA over 232 was designed as 

shown in Figure 2. Presented modulo adder architecture is an area, propagation delay, and energy-efficient as 

compared to existing modulo CLA architectures.  
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Figure 2. Novel modulo CLA architecture over 232  
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5.2.  Novel S-Box architecture 

Two S-boxes S1 & S2 are used in SNOW 3G architecture each requires memory of 4 KB.  

The lookup table of S1 is taken from the Rijndael substitution box and a lookup table of S2 is based on 

Dickson polynomial over GF-28. As per design specification, each S-box (S1 or S2) is implemented by using 

4 lookup tables and each lookup table has 256 values each of 4 bytes. So the implementation of each lookup 

table requires (256x4 = 1024bytes of memory). Each S-box has 4 lookup tables, so total memory required for 

the implementation of S1 or S2 is (4x1024 = 4K) 4KB. The total memory needed for the realization of two  

S-boxes is 8KB. Existing implementation [10-16, 26-29] uses S-box architecture as shown in Figure 3. 
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Figure 3. Existing S-boxes architecture   

 

 

The four lookup tables of S1 i.e. S1_T0 to S1_T3 as shown in Figure 3 has the same content but 

exist in 8 bit shifted form. Analogous is the case of S-box S2. Presented novel S-box architectures use  

a single lookup table for implementation of S-box (S1 or S2). Presented research work uses two architectures 

for S-box implementation. First architecture as shown in Figure 4, consumes fewer resources but useful to 

low-frequency applications only. Second architecture as shown in Figure 5, consumes fewer resources as 

compared to existing architectures but required more resources as compared to Novel S-box architecture-1. 
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Figure 4. Novel S-Box architecture1  

 

 

Presented designs require 2 KB of memory for the realization of S-boxes S1 & S2. These designs 

save 6 KB of memory as compared to existing designs. S-box architecture-1 saves 6 KB memory at the cost 

of some additional hardware (Single 2-bit counter, two 4 I/p multiplexers, and four 32 bit latches).  

This architecture is 4 times slower than conventional architectures and useful for low-frequency applications. 

S-box architecture-2 has the same speed as conventional architectures but uses 4 additional  

256:1 multiplexers. The second architecture can be used for low and high-speed applications depending on 

cost and speed tradeoffs 
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Figure 5. Novel S-Box architecture 2 

 

 

5.3.  Optimized SNOW 3G architecture  

Optimized SNOW 3G architecture as shown in Figure 6 is designed using novel modulo CLA 

architecture and novel S-Box architecture as discussed in the previous section. SNOW 3G architecture 

designed using S-Box architecture-1 is used for low-frequency applications and needs two clock 

arrangements. Whereas SNOW 3G architecture designed using S-Box architecture-2 is used for  

high-frequency applications and needs a single clock. Internal block diagram of optimized SNOW 3G 

architecture as shown in Figure 7.  
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Figure 6. Top module of refined SNOW 3G architecture   
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Figure 7. Internal block diagram of optimized SNOW 3G architecture  

 

 

FSM of SNOW 3G architecture consists of two modulo adders and two S-Boxes. Two modulo 

adders will decide the speed of the algorithm and two S-boxes will decide hardware utilization of  

the algorithm. The use of novel modulo CLA over 232 minimizes propagation delay and the use of novel  

S-box architecture minimizes hardware utilization. These refinements help to improve the performance of  

the SNOW 3G algorithm in terms of throughput and area.  

Optimized SNOW 3G architecture uses VHDL language for coding. The same is implemented on 

the FPGA device Virtex xc5vfx100e manufactured by Xilinx [30]. The presented architecture achieved  

a maximum frequency of 254.9 MHz and throughput of 7.2235 Gbps. Table 2 shows particulars about  

the technology used. Figure 8 and Figure 9 show RTL schematic and output waveform of the presented 

architecture respectively.   

 

 

Table 2. Technology used details 
SNOW3GNEW Project Status (05/03/2020 - 11:34:41) 

Project File: SNOW3GOPT.xise Parser Errors: No Errors 

Module Name: SNOW3G Implementation State: Synthesized 

Target Device: xc5vfx100t-3ff1136  Errors: No Errors 

Product Version: ISE 13.2  Warnings: No Warnings 

Design Goal: Balanced  Routing Results:  

Design Strategy: Xilinx Default (unlocked)   Timing Constraints:  

Environment: System Settings   Final Timing Score:  

 

file:///F:/1%20Hulle%20Ph.D.%20Data/2%20Final%20Implementation%20Data/Final%20Result%20snap%20shots/Research%204%20SNOW-3G%20Done/Snow%20with%20Low%20freq%20Architecture/Xilinx%20Default%20(unlocked)
file:///C:/.Xilinx/RESEARCH4/SNOW3G_envsettings.html
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Figure 8. RTL schematic 

 

 

 
 

Figure 9. Output waveform  

 

 

6. RESULT AND DISCUSSIONS 

The following section discusses the result in terms of area, propagation delay, throughput,  

and memory utilized for presented SNOW 3G architecture.   

 

6.1.  The area 

6.1.1. Novel modulo CLA architecture over 232 

Presented novel modulo CLAs are used as modulo adders over 232 in Optimized SNOW 3G 

architecture. A comparison of device utilization of existing [13, 22] and presented architectures is shown  

in Figure 10. 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Optimized architecture for SNOW 3G (N. B. Hulle) 

553 

 
 

Figure 10. Comparisons of hardware utilization for CLA architectures  

 

 

6.1.2. Novel S-Box architecture  

Optimized SNOW 3G architecture uses Novel S-box architecture to avoid redundancy of lookup 

tables. Presented Novel S-Box architecture-1 is suitable for low-frequency applications and Novel S-Box 

architecture-2 is useful for high-frequency applications. The use of these novel architectures minimizes 

hardware requirement as shown in the Figure 11. The comparison shows that the hardware resources used in 

the presented architectures are less than existing architectures [12-16]. The reduction in area is possible 

because S-box is designed using one lookup table in place of four lookup tables.  

 

 

 
 

Figure 11. Comparisons of hardware utilization for S-box 

 

 

6.1.3. Optimized SNOW 3G architecture 

Optimized SNOW 3G architecture uses refined modulo CLA over 232 and refined S-box to for 

performance improvement. Hardware resources used by optimized SNOW 3G architecture are presented in 

Table 3 and Table 4 shows comparisons of hardware resources used by optimized SNOW 3G and existing 

architectures [12-16].  

The comparison shows that optimized SNOW 3G architecture utilizes minimum resources as 

compared to architecture presented Kitsos et al. [13], Madani and anougast [15] and Madani et al. [16].  

The architecture presented by Kitsos et al. [12] is ASIC, so the comparison is difficult. The architecture 

presented by Zhang et al. [14] uses less hardware as compared to proposed refined architecture because only 

one mode implemented on hardware.  
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Table 3. Device utilization summary of optimized SNOW 3G architecture  
Device Utilization Summary (estimated values) 

Logic Utilization Used Available Utilization 

1. Number of Slice Registers 870 64000 1% 

2. Number of Slice LUTs 1208 64000 1% 

3. Number of fully used LUT-FF pairs 680 1398 48% 

4. Number of bonded IOBs 325 640 50% 

5. Number of BUFG/BUFGCTRLs 10 32 31% 

 

 

Table 4. Comparison of hardware resources for different architectures  
Sr. No. Architectures Hardware resources used 

1 Proposed Refined Architecture 870 Slice Registers and 1208 slice LUTs on Virtex 5 

2 The architecture proposed by P. Kitsos et al. [12] ASIC implementation used 25016 equivalent gates 

3 The architecture proposed by P. Kitsos et al. [13] Slices used 3559 on Spartan 3 Family 

4 The architecture proposed by L. Zhang et al. [14] 
Only one mode implemented on hardware to increase throughput 

with minimum hardware resources, 356 slices on Virtex 5 

5 
The architecture proposed by Mahdi Madani and Camel 

Tanougast [15] 
1020 Slice Registers and 889 Slice LUTs on Virtex5 

6 
The architecture proposed Mahdi Madani, Ilyas 

Benkhaddra et al. [16] 
912 Slice Registers and 1108 Slice LUTs on Virtex 5 

 

 

6.2.  Propagation delay  

6.2.1. Novel modulo CLA over 232 

Propagation delay comparison of proposed refined CLA and existing CLA architectures [13, 22] is 

shown in Figure 12. Propagation delay evaluation shows that delay of presented novel modulo CLA 

architecture is fewer than existing CLA architectures. The presented CLA architecture will help to improve 

the throughput of Optimized SNOW 3G architecture. 

 

 

 
 

Figure 12. Delay comparisons of novel and existing CLA architectures 

 

 

6.2.2. Novel S-Box architecture  

The combinational path delay comparisons of proposed refined S-box architectures and existing  

S-box architectures [12-16] are shown in the Table 5. The comparison shows that the propagation delay of 

proposed low-frequency architecture is more as compared to other architectures, with less hardware. 

Similarly, the propagation delay of proposed high-frequency architecture is less as compared to other 

architectures with moderate hardware utilization. The path delay of existing architectures is more as 

compared to presented architecture 1 but less as compared to architecture 2. The hardware resources used by 

existing architecture are more as compared to other architectures. 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Optimized architecture for SNOW 3G (N. B. Hulle) 

555 

Table 5. Hardware used and propagation delay comparison of S-box implementations 

Sr. No. S- Box architectures 
No. of slices 

used 

Number of 4 

input LUTs 

Propagation 

delay (ns) 

1 Proposed Low-Frequency Architecture 534 748 9.92 

2 Proposed High-frequency Architecture 1152 2304 9.12 

3 Existing Architecture   2048 4164 9.34 

 

 

6.3.  Throughput and memory   

Comparisons of throughput achieved and memory used for S-box realization of optimized SNOW 

3G and existing SNOW 3G [12-16] architectures are shown in Figure 13. The comparison shows that 

throughput of optimized SNOW 3G is higher than architecture presented by Kitsos et al. [13], close to 

architecture presented by Kitsos et al. [12], but less than architecture presented by Zhang et al. [14], Madani 

and Tanougast [15] and Madani et al. [16]. This may be due to the use of more hardware resources.  

 

 

 
 

Figure 13. Comparisons throughput and memory used for the realization of S-boxes 

 

 

7. CONCLUSION  

Optimized SNOW 3G architecture is presented in the paper uses novel modulo CLA and novel  

S-box architecture. The use of novel CLA minimizes hardware required for modulo adders and minimizes 

propagation delay as compared to existing architectures. The use of novel S-box architecture minimizes 6 K 

bytes of memory as compared to existing architectures. The presented architecture uses 2K bytes of memory, 

whereas existing architectures 8 K bytes of memory for the same. The presented SNOW architecture attained 

throughput of 7.2463 Gbps at a clock frequency of 226.562 MHz. Presented architecture achieves throughput 

more than architecture and close to ASIC implementation. 

The throughput of existing architectures is more than the presented architecture. It may be due to:  

(1) S-boxes used in these architectures use 8 KB memory for S-box realizations; (2) Architecture uses  

a software platform that helps to minimize hardware and to increase throughput; (3) Architecture is ASIC 

realization and ASIC designs are always faster than FPGA realizations. 
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