
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 11, No. 1, February 2021, pp. 589~595

ISSN: 2088-8708, DOI: 10.11591/ijece.v11i1.pp589-595 589

Journal homepage: http://ijece.iaescore.com

Adaptive key generation algorithm based on software

engineering methodology

Muayad Sadik Croock, Zahraa Abbas Hassan, Saja Dhyaa Khuder
Department of Computer Engineering, University of Technology, Iraq

Article Info ABSTRACT

Article history:

Received Mar 23, 2020

Revised Jun 14, 2020

Accepted Jun 26, 2020

 Recently, the generation of security keys has been considered for

guaranteeing the strongest of them in terms of randomness. In addition,

the software engineering methodologies are adopted to ensure the mentioned

goal is reached. In this paper, an adaptive key generation algorithm is

proposed based on software engineering techniques. The adopted software

engineering technique is self-checking process, used for detecting the fault in

the underlying systems. This technique checks the generated security keys in

terms of validity based on randomness factors. These factors include

the results of National Institute of Standard Test (NIST) tests. In case

the randomness factors are less than the accepted values, the key is

regenerated until obtaining the valid one. It is important to note that

the security keys are generated using shift register and SIGABA technique.

The proposed algorithm is tested over different case studies and the results

show the effective performance of it to produce well random generated keys.

Keywords:

Key generation

Security

Self-checking process

SIGABA

Software engineering

This is an open access article under the CC BY-SA license.

Corresponding Author:

Muayad Sadik Croock,

Department of Compute Engineering,

University of Technology,
Al-sinaa Street, Baghdad, Iraq.

Email: Muayad.S.Croock@uotechnology.edu.iq, 120052@uotechnology.edu.iq,

120099@uotechnology.edu.iq

1. INTRODUCTION

In the last years, the searching for strong security keys that stand against the hacker key-breaking

methods has been increased sharply. Thus, the introduced studies, methods and algorithms aimed to obtain

these types of keys for using in security algorithms. This is to produce a security level sufficiently acts

against the attacks and hackers. Different approaches have been adopted to generate the security keys with

high variation in long, sub-sequence and correlations [1, 2]. At the other hand, software engineering methods

have been combined with these approaches to increase the reliability of the generated security keys to resist

the dominated attacks over numerous applications. One of these methods is the fault tolerance technique that

is based on self-checking process to detect the happened faults [3-8]. The solution for the detected fault can

be addressed throughout different ways depending on the utilized application.

Due to the importance of the security key management in the security research, many researchers

have focused on proposing efficient algorithms. In [9], the authors provided a study on using software

engineering for evaluating the security risks including identification system in humans using some image

features that need software engineering for producing the reliable codes. In [10], a complete study for

hardware security was introduced. This study included key points of using the techniques of software

engineering in the key generation and management. Researchers of [11] considered the security of cloud

computing in terms of authentication levels. The introduced method uses the software engineering in

https://creativecommons.org/licenses/by-sa/4.0/
mailto:Muayad.S.Croock@uotechnology.edu.iq
mailto:120052@uotechnology.edu.iq
mailto:120099@uotechnology.edu.iq

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 1, February 2021 : 589 - 595

590

managing the keys used in authentication, in which the security was guaranteed. In [12], secure keys were

produced for cryptography methods to be used in network communication. This field had an important data

to be transferred and this was the reason behind providing it. In [13], the cyber-physical systems had been

secured using the investigated method based on software engineering technology. The presented system

worked at the physical layer to adapt the hardware components within the system. In [14], different

practical software engineering developments for security systems were introduced. The study provided

a deep-thinking way to tackle the problems of security in developing the used software.

The authors of [15] introduced a dynamic mechanism for generating the required security keys.

This mechanism was based on genetic algorithm in addition to the use of software engineering technology.

Moreover, multiple key generation method was proposed in [16]. These keys were employed in combination

with the actions of sharing and backup for data. In [17], ciphering method of DES was combined with

generated keys for securing the storage of data in cloud. The keys were generated based on a proposed

algorithm that depended on software engineering. The authors of [18] presented design and implementation

of key generation used for image security. The image security utilized the generated keys in coding of

included components. In [19], memory efficient based multi key generation method was proposed.

This method has been employed for securing the sensitive data transfer over IoT technology in

the cloud environment.

At the other side, the authors of [20] utilized the OFDM subcarrier response systems for transferring

important data in secure way. The used security keys were generated in high randomness to ensure the strong

of them. In [21], the key generation method for multilevel quantization was provided. In addition,

the pre-processing was also secured using the same method. These keys were generated using software

engineering techniques. The researchers of [22] used the genetic algorithm in designing the key generation

method that could guarantee high randomness. The enhanced random keys were produced for

symmetric ones.

It is well known that the researchers of [9-22] worked hard for producing high quality security

methods based on random generated keys. In this paper, an adaptive random key generation algorithm is

proposed. The proposed algorithm adopts the self-checking process in fault detection as a part of fault

tolerance technique to produce high randomness keys. The NIST tests are considered as a success threshold

for self-checking process. The generated keys should pass the allocated thresholds to be adopted as valid

keys. The proposed algorithm is evaluated in terms of performance and the obtained results prove the claim

of this paper.

2. PROPOSD SOFTWARE ENGINEERING BASED METHOD

As mentioned above, the proposed method is based on software engineering process to produce high

quality random security keys. In order to ease the reading flow, this section is divided into the followings.

2.1. Structure of the proposed algorithm

Figure 1 shows the structure of the key generation algorithm. It is clearly explained that the data

block firstly enters to the SIGABA approach. This approach is built using five main polynomial equations to

increase the randomness in choosing the seeds for shift register. SIGABA was produced in World War 2 to

encrypt the transmitted messages as shown in Figure 2 [23-24]. The selected polynomial by the SIGABA

approach with 32-bit is passed to the least forwarded shift register (LFSR). The LFSR is responsible on

generating the key with 128-bit length. Figure 3 shows the structure of the adopted LFSR.

Figure 1. Key generation algorithm structure

Figure 2. SIGABA device

Int J Elec & Comp Eng ISSN: 2088-8708

Adaptive key generation algorithm based on software engineering methodology (Muayad Sadik Croock)

591

Figure 3. LFSR structure

2.2. Proposed algorithm

Figure 4 (shown in Appendix) explains the adaptive key generation algorithm of that adopts

SIGARA method [25] and the software engineering technique in verifying the validity of the generated keys.

The adopted steps of this algorithm can be summarized as follows:

- For each loop of the proposed algorithm, it chooses five polynomial equations that are sorted.

- According to SIGABA approach, the proposed algorithm chooses equation 5.

- Its exams the least significant bit (LSB) if 0 or 1.

- In case the LSB is 1, the algorithm selects path 2 of Figure 4(b), else it selects path 1 of Figure 4(b).

- Path 1 chooses equation 3, while path 2 chooses equation 4.

- Path 1 exams the LSB of equation 3, and path 2 tests LS of equation 4.

- In both paths, if the LSB of equation (3 and 4) is 1, it selects equation 2 and if LSB is 1 the algorithm

selects equation 1. The same procedure is performed for path 2.

- The results of path 1 is XORing with equation 4, while the results of path 2 is XORing with equation 3.

- The results of XOR is considered as a seed equation for LFSR, as shown in Figure 4(c).

- The LFSR receives the seed equation and applies the adopted procedure to produce 128-bit key.

- The obtained key is tested using the self-checking procedure. This is done by checking the validity of

the key in terms of randomness using NIST (frequency and serial) tests. The results are compared with

the acceptable thresholds. In case the results are out of the expected values, the key is rejected and

the loop returns to the first step of the proposed algorithm to generate new key. Otherwise, the resulting

key is valid.

3. EXPERMENTAL RESULTS

In order to test the proposed algorithm of generating reliable security keys, different training

generations for keys are performed. Figure 5 shows the run screen of the proposed algorithm that explain

the procedure mentioned in section 2. It is noted that there are five polynomial equations that create five

sequences of binary 32-bit. After applying the proposed algorithm, the testing results of NIST frequency and

serial are appeared to accept the generated 128-bit keys as they pass the acceptable threshold ranges.

Therefore, the generated key is valid.

Figure 5. Valid generated key case study

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 1, February 2021 : 589 - 595

592

At the other hand, Figure 6 illustrates the second case study, where the NIST frequency test is

passed, while the serial test is failed. In this case, the generated key is considered as invalid and rejected.

According to the proposed algorithm, the key is regenerated from again following the same steps.

The regenerated key is passed both NIST tests as shown in Figure 7. In this case, the generated key is valid

and ready to be used in the security methods.

Figure 6. Invalid generated key case study

Figure 7. Valid regenerated key case study

For more testing results, five examinations are performed for the proposed algorithm. The results of

these examinations are shown Table 1. Table 2 explains the result analysis of all case studies including both

NIST tests and the common couples of bits. All case studies are passed and produce valid keys, yet the case

study number 5 is failed in the serial test. Thus, the proposed algorithm uses the software engineering based

fault tolerance to regenerate the failed key. The regenerated key is also tested over the same NIST tests.

The obtained regenerated key is shown in Table 3, while Table 4 lists the analysis of the new key and it well

shown that the key is passed both tests.

Int J Elec & Comp Eng ISSN: 2088-8708

Adaptive key generation algorithm based on software engineering methodology (Muayad Sadik Croock)

593

Table 1. Generated keys for different case studies
No 5 Polynomials as input to SIGBA

(8 Bits)

32-bit output of SIGBA (8 Bits) Generated keys

(128 Bits)

1 01100100100101011111110000010011
00100111111001011101101101110101

01101001000000110110001010000000

01110100011110001101010001111100
10100100000101111111111100010001

0000110110010110100111101
0010011

0001100101101110011000100100111
0111111011010011011101111001011

1110000010110001101101100010011

0111110000100001101001110001111
1001

2 10110000110100101000010011101010

10111111011000100110110101101110
00100010011010100000110110000000

10111101110001100111100100011100

11011110010110110010110100110010

0000110100010100111111011

1110110

0101100011010100000100100011011

0001000111011000101100000010011
1111010110011011111101101101000

1010110101111111000010001101001

1011
3 01011000111110101001001001111011

10110000101100011010010111000100

01111011001001011011011000000110
00011001110001010000001111011101

10011010100010010001100100001101

1100101110010100000100111

1000010

1001110001010111111010110001011

1111110011100001010111001010001

0000000001011100001011001011101
0000111011001011000111100000000

0010

4 01111100000011110100010111011100
01000111010101100111001010101000

11111101010011111010001100010101

01111110010101111110110000011001
10001100111101001010010111001100

0011100100000001100111101
0110001

1101111111010001011000001110010
0000110111010111111100110101011

0111100010011100000101111101000

1011110011110000010110100010101
0100

5 10110001011011010011100100011010

01001010011111010111110110011110

10011110000111000110101110110001

11101000110001010111010001110100

10001100000100001111110110111011

0010111101110001010100101

0101011

0011010000011001101001001011110

0100011010010101000010010100101

1111010010101000101010000110110

1001101010101001010000111000101

1011

Table 2. Results analysis for 5 case studies
No. No. of zeros No. of ones No. of

00

No. of

01

No. of

10

No. of

11

Frequency Test Serial Test

1 59 69 29 30 29 39 0.781=pass 1.447=pass
2 63 65 30 33 32 32 0.0312=pass 0.118=Pass

3 68 60 39 28 29 31 0.5=pass 1.854=pass

4 60 68 29 30 31 37 0.5=pass 0.720=Pass
5 70 58 30 40 39 18 1.125=pass 8.725=Not pass

Table 3. Regenerated key
No 5 Polynomials as input to SIGBA

(8 Bits)
32-bit output of SIGBA (8 Bits) Generated keys

(128 Bits)

5 00110010011111001001110011010110

01111011100000001001110010110000

01011000000111000101010000110000
01001011001111101011100010011011

11100001000010111101001111111001

0010001110011100110010001

0000000

110010001001111100000100100010010

110011010110111101001100101111010

100101000110010000000101101100010
01000111010100111001010011101

Table 4. Regenerated key analysis
No. No.

of zeros

No.

of ones

No. of

00

No. of

01

No. of

10

No. of

11

Frequency

Test

Serial

Test

5 68 60 33 35 35 24 0.5
pass

2.10629
pass

4. CONCLUSION

An adaptive key generation algorithm based on software engineering process was proposed.

This algorithm aimed to generate security keys of 128-bit with high randomness to ensure the accepted

resilience against the attacks. The software engineering fault tolerance technique was used for checking

the generated keys in terms of randomness based on NIST tests. These tests were employed as accepted

threshold to be decided if the generated keys were valid or not. The proposed algorithm was tested over

different case studies and the obtained results proved the validity of this algorithm in terms of generating

reliable and random keys.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 1, February 2021 : 589 - 595

594

APPENDIX

(a)

(c)

(b)

Figure 4. Proposed algorithm

Int J Elec & Comp Eng ISSN: 2088-8708

Adaptive key generation algorithm based on software engineering methodology (Muayad Sadik Croock)

595

REFERENCES
[1] E. Barker and A. Roginsky, “Recommendation for Cryptographic Key Generation,” NIST Publication, 2019.

[2] B. Buchanan, “The Hacker and the State: Cyber Attacks and the New Normal of Geopolitics,” Politics of Privacy &

Surveillance, 2020.

[3] I. Sommerville, “Software engineering,” 10th Edition, Pearson Education, Inc, 2017.

[4] R. J. Ellison, et al., “Evaluating and Mitigating Software Supply Chain Security Risks,” Research, Technology, and

System Solutions (RTSS) and CERT Programs, 2010.

[5] M. Kuutilaa, et al., “Time Pressure in Software Engineering: A Systematic Review,” Elsiver, 2020.

[6] L. Mottola, et al., “Simplifying the Integration of Wireless Sensor Networks into Business Processes,” IEEE

Transaction on Software Engineering, vol. 45, no. 6, pp. 576-596, 2019.

[7] Ayuba J., et al., “Software Development of Integrated Wireless Sensor Networks for RealTime Monitoring of Oil

and Gas Flow Rate Metering Infrastructure,” Journal of Information Technology & Software Engineering, vol. 8,

no. 2, pp. 1-10, 2018.

[8] I. Almomani and A. Alromi, “Integrating Software Engineering Processes in the Development of Efficient Intrusion

Detection Systems in Wireless Sensor Networks,” Journal of Semsors, vol. 20, no. 5, pp. 1-28, 2020.

[9] S. D. Khudhur and M. S. Croock, “Dental X-Ray Based Human Identification System for Forensic,” Engineering

and Technology Journal, vol. 35, no. 1, pp. 49-60, 2017.

[10] Y. Jin, “Introduction to Hardware Security,” Journal of Electronics, vol. 4, pp. 763-784, 2015.

[11] S. Dey and S. D. Joshi, “ECC Based Authentication System for Performance Improvement in Security of Cloud,”

International Journal of Advanced Research in Computer Science and Software Engineering, vol. 6, no. 3,

pp. 820-823, 2016.

[12] Suresh H. and R. S. Hegadi, “DCA-SNC: Dual Cryptosystem Architecture for Secure Network Communication,”

International Journal of Advanced Research in Computer Science and Software Engineering, vol. 7, no. 1,

pp. 198-205, 2017.

[13] S. Ur Rehman and V. Gruhn, “An Effective Security Requirements Engineering Framework for Cyber-Physical

Systems,” Technologies, vol. 6, no. 65, pp. 1-20, 2018.

[14] Safe Code, “Fundamental Practices for Secure Software,” Third Edition, SAFECode, 2018.

[15] C. Chunka, et al., “An efficient mechanism to generate dynamic keys based on genetic algorithm,” Special Issue

Article, Wiley, pp. 1-10, 2018.

[16] R. Hariharan, et al., “Multiple key Generation for Securing Data Sharing and Backup,” International Journal of

Engineering and Advanced Technology, vol. 8, no. 6, pp. 166-169, 2019.

[17] M. Tajammul and R. Parveen, “Key Generation Algorithm Coupled with DES for Securing Cloud Storage,”

International Journal of Engineering and Advanced Technology, vol. 8, no. 5, pp. 1452-1458, 2019.

[18] A. Sharma, et al., “Design and Implementation of key Generation Algorithm for Secure Image,” International

Journal of Engineering and Advanced Technology, vol. 8, no. 2, pp. 5139-5146, 2019.

[19] C. Thirumalai and H. Kar, “Memory Efficient Multi Key (MEMK) Generation Scheme for Secure Transportation

of Sensitive Data over Cloud and IoT Devices,” International Conference on Innovations in Power and Advanced

Computing Technologies, pp. 1-6, 2017.

[20] J. Zhang, et al., “Efficient Key Generation by Exploiting Randomness from Channel Responses of Individual

OFDM Subcarriers,” IEEE Transactions on Communications, vol. 64, pp. 2578-2588, 2016.

[21] M. Yuliana, et al., “A Simple Secret Key Generation by Using a Combination of Pre-Processing Method with

a Multilevel Quantization,” Journal of Entropy, vol. 21, no. 192, pp. 1-25, 2019.

[22] A. Z. Zakaria, et al., “Enhancing the Randomness of Symmetric Key using Genetic Algorithm,” International

Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 8S, pp. 327-330, 2019.

[23] Level 1 Validation, “Sigaba Gateway FIPS 140-1 Non-Proprietary Security Policy,” Multi-chip standalone, 2001.

[24] H. E. Kwong, “Cryptanalysis of the Sigaba Cipher,” San José State University, 2008.

[25] Sh. M. Naser, M. S. Croock, “Developed Lightweight Authentication and Key Management Protocol for Wireless

Sensor Network,” International Journal of Advanced Research in Science, Engineering and Technology, Vol. 5,

No. 8, pp. 6606-6619, 2018.

https://www.amazon.com/Ben-Buchanan/e/B01HYHS044/ref=dp_byline_cont_book_1
https://www.amazon.com/gp/new-releases/books/11764689011/ref=zg_b_hnr_11764689011_1
https://www.amazon.com/gp/new-releases/books/11764689011/ref=zg_b_hnr_11764689011_1
https://ieeexplore.ieee.org/xpl/conhome/4267954/proceeding
https://ieeexplore.ieee.org/author/37299595700
https://sciprofiles.com/profile/748663
https://sciprofiles.com/profile/author/eVJRRm8zQlBwT0FTV3ZVMGRDZW5ZMmE1NURsTUM5WTQrTEY5aDVEclVHTT0=
https://ieeexplore.ieee.org/xpl/conhome/8826/proceeding

