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 It is very important to accurately detect wind direction and speed for wind 

energy that is one of the essential sustainable energy sources. Studies on 

the wind speed forecasting are generally carried out for long-term 

predictions. One of the main reasons for the long-term forecasts is the correct 

planning of the area where the wind turbine will be built due to the high 

investment costs and long-term returns. Besides that, short-term forecasting 

is another important point for the efficient use of wind turbines. In addition 

to estimating only average values, making instant and dynamic short-term 

forecasts are necessary to control wind turbines. In this study, short-term 

forecasting of the changes in wind speed between 1-20 minutes using deep 

learning was performed. Wind speed data was obtained instantaneously from 

the feedback of the emulated wind turbine's generator. These dynamically 

changing data was used as an input of the deep learning algorithm. Each new 

data from the generator was used as both test and training input in 

the proposed approach. In this way, the model accuracy and enhancement 

were provided simultaneously. The proposed approach was turned into 

a modular independent integrated system to work in various wind turbine 

applications. It was observed that the system can predict wind speed dynamically 

with around 3% error in the applications in the test setup applications. 
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1. INTRODUCTION 

Wind is one of the most promising ones among renewable energy sources [1]. The installed wind 

energy capacity of the world has been increasing exponentially in recent years. This increase causes wind 

energy to be an area of interest for investors and thus turns into a big business [1-5]. However, a lot of 

research is being done to decrease wind energy installation and energy production costs. These studies focus 

on improving the efficiency of power systems as well as improving the mechanical parts of wind turbines. 

Wind, which is the most popular energy source among renewable energy sources, has different difficulties 

compared to the region established in electricity generation. However, the most important problem of all 

wind farm operators is still wind speed, power estimation and turbine control [4-10]. 

Connection and operation of the generated energy to the interconnected grid have different 

problems. Initial investment costs of the power plants set up to convert wind speed into electrical energy are 

very high. This investment cost requires a detailed analysis of the wind speed data of the installation area. 

These analyses can be separated into two categories as short-term and long-term forecasting [11]. Short-term 

forecasts are up to several weeks, while long-term forecasts cover up to several decades. In the literature, 
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many methods have been used to make short- and long-term forecasts from wind speed data. Most of  

the methods use statistical analysis techniques. Time series modeling techniques such as ARIMA or neural 

networks have been widely used in most studies for the prediction of wind speed [12-16]. 

Statistical learning method; estimates wind speed by deducting control system data and similar 

historical data [11]. The model uses for prediction is usually a time series model and estimates parameters 

using some iterations on the dataset. In some studies, data mining algorithms have also been used for 

prediction. Similar learning algorithms are used in data mining, just as they are used in artificial neural 

networks [11, 16, 17]. Statistical learning methods are preferred for two main reasons, which are prediction 

models that are easy to create and have high prediction accuracy for the short-term. Models based on physical 

systems can also be used in wind forecasting. These methods consist of a series of differential equations and 

are used for numerical weather forecasts [11]. These physical methods can be used in long-term systems that 

require more detailed information. Also, when these physical systems are compared with the estimations 

made using statistical learning methods, success rates are lower. However, there are approaches that use both 

the physical model and statistical models together. These are called hybrid model approach, where numerical 

weather forecast data is solved using statistical models. In general, multi-input like wind speed, direction, and 

other meteorological data are used for inputs of the prediction algorithm [18-21]. 

The Artificial Intelligence (AI) method offers very successful results thanks to its ability to map 

nonlinear features. The main advantage of AI methods is to estimate possible wind speed series without 

a predefined mathematical tool. As the representative of artificial intelligence methods, artificial neural 

networks [22, 23], feed-forward neural network [24] and adaptive linear element neural network for wind 

speed prediction are currently used by researchers [24-26]. 

Deep learning algorithms are preferred over traditional neural networks to reveal more detailed 

features of wind speed series. Deep learning algorithms provide very successful results in many computer-

based sensing, vision, speech and signal processing [27]. A deep learning method has been applied to reveal 

the complex features of wind speed data [28-30]. Experimental results show that deep learning algorithms 

have the best performance among comparison models. While many analyses in wind speed prediction studies 

produced the predicted wind speed values directly from the raw wind speed data, the non-stationary effects of 

the wind speed series were also ignored. By comparison, deep learning is a subset of machine learning. 

However, although deep learning, and machine learning function similarly, their capabilities are different. 

deep-learning automatically finds the features to be used for classification, while machine learning provides 

these features manually. In addition, compared to machine learning, deep learning requires stronger 

processors and larger training data for its results. Compared to ANN, deep learning offers more layers 

working [31-37]. 

In this study, a short-term wind speed forecasting system is proposed using deep learning for wind 

turbines applications. In section 2, the system architecture and synthetic data generation are explained.  

Then the short-term wind speed forecasting system is described in the same section. Short-term wind speed 

forecasting results are presented in Section 3. Finally, conclusions are presented in section 4. 

 

 

2. THE PROPOSED SYSTEM ARCHITECTURE 

Global wind data at a 2.5-degree resolution have been published by the National Centres for 

Environmental Information, national oceanic and atmospheric administration (NOAA) [38]. Daily wind-

velocity-averages since 1948 have been given in the dataset provided by NOAA. In order to simulate 

a realistic situation, a data generation model was designed using the daily average wind-velocity values from 

the dataset and generated random values having the final average value was still consistent with the dataset. 

We hereby interpolated the daily average values to minute-by-minute values. 

The data generation model was designed in Simulink and is shown in Figure 1. In this model, data 

generated by the method explained above were applied to a PID control system which controls a DC motor 

emulating the wind-turbine. A quadrature encoder was connected to the rotor measuring the rotational speed 

of the motor. Interpolated wind-data were simulated by this actual system and 4 hours of real-time data were 

collected for each day of each year. Therefore, we could be able to generate more detailed data that is 

consistent with the dataset. In the Simulink model given below, Encoder block measured the angular velocity 

of the rotor. Angular velocity than was fed to the PID Controller block as the feedback value. Rotor speed 

was generated using the actual data received from the data block and summed with a random value generated 

by the Random Number block. Time Pulses block generated timing pulses for each minute and hour in order 

to proceed to the next value in the dataset. Selector block used the hour pulse to pick the next value from  

the dataset. 
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Figure 1. Interpolation/generation model 

 

 

3. THE SHORT-TERM WIND SPEED FORECASTING SYSTEM 

In this section, a short-term wind speed prediction was performed with two datasets, separately. 

KERAS library was used for the training model. 15 iterations were performed for network training with 

15 minutes of data from both datasets. The input layer of the deep learning model consisted of a single 

neuron with linear activation. The hidden layer was built as the hidden LSTM layer by using 128 neurons 

with ReLU (Rectified Linear Unit) activation function for each neuron. The output layer was built as 

the hidden dense layer by using a single neuron with a linear activation function. Nvidia Jetson Nano 

microcomputer which directly connected to the motor output was used for both learning and forecasting. 

Thus, it will be easier to transfer the forecast results to any unit in the wind turbine and to process 

accordingly. Test results are presented in Section 4. 

 

𝑒𝑣 = |𝑣𝑎𝑣𝑔 + 𝛼|
𝑖
− 𝑣𝑎𝑐𝑡   (1) 

 

 Wind speed error ev is given in (1) where vavg was the daily average wind speed, α was a random 

number representing the daily fluctuation of wind speed, vact was the actual wind speed measured by  

the quadrature encoder, and i was the index marking every minute. ev was fed to the PI controller running  

the DC motor emulating the turbine and synthetic data based on actual wind speed data were collected by  

the system minute by minute. Using the model given above two synthetic datasets were generated for every 

15th January with 1 minute and 6 minutes intervals, as shown in Figures 2 and 3, respectively. 
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Figure 2. Generated data with a 1-minute time interval 
 
 

 
 

Figure 3. Generated data with 6 minutes time interval 

 

 

4. RESULTS AND DISCUSSION 

In this section, the test results of the system are presented. The test result after data training for  

the first dataset is shown in Figure 4. For a 1-minute-interval dataset, 30% (approximately 5100 singular 

data) of the data were used for the test. According to test results, the proposed algorithm has a 3.315% 

prediction error rate. Using a 6-minute-interval dataset, again 30% (approximately 850 singular data) of  

the data were used for the test, as well. The test results are shown in Figure 5. According to test results,  

the proposed algorithm has a 10.93% prediction error rate. According to the test results, the system was 

observed to produce better forecasting results with approximately 3.315% forecasting error by using the first 

dataset which has data with a 1-minute time interval. However, time and space complexity are higher than in 

the second dataset. The forecasting result had an acceptable error rate (approximately 10.93%) using  

the second dataset. Therefore, the second set can be preferred for low time and space complexity due to  

the dynamic structure of the system. Computational costs were not a decisive factor because data would be 

gathered and calculated in a separate unit for both training and forecasting. The proposed approach had 

acceptable error rates with both datasets for wind turbine applications. In cases where data storage is limited, 

a 6-minute time interval dataset may be preferred. If there is no such limitation, it will be appropriate to use 

a 1-minute time interval data. 
 

 

 
 

Figure 4. Test results with a 1-minute time interval 
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Figure 5. Test results with 6 minutes time interval 

 

 

5. CONCLUSION 
In this study, the short-term wind speed forecasting system using deep learning for wind turbines 

applications is presented. The proposed system produces short-term wind speed forecasts to be used in 
different kinds of wind turbine applications. The system can be easily integrated into wind turbines. Thus,  
it can be used as a brake system, emergency warning, etc. According to test results which were presented in 
section 3, it could be seen that the proposed approach produced better results using 1-minute time interval 
data for training. Moreover, the error rate achieved when using the 6-minute time interval data is also 
acceptable. The most important differences between the two datasets which were shown in Figures 4 and 5, 
were error rates and space complexity. These criteria should be kept in mind when integrating the proposed 
system into actual applications. 
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