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ABSTRACT

Myoelectric prostheses are a viable solution for people with amputations. The chal-
lenge in implementing a usable myoelectric prosthesis lies in accurately recognizing
different hand gestures. The current myoelectric devices usually implement very few
hand gestures. In order to approximate a real hand functionality, a myoelectric prosthe-
sis should implement a large number of hand and finger gestures. However, increasing
number of gestures can lead to a decrease in recognition accuracy. In this work a
Myo armband device is used to recognize fourteen gestures (five build in gestures of
Myo armband in addition to nine new gestures). The data in this research is collected
from three body-able subjects for a period of 7 seconds per gesture. The proposed
method uses a pattern recognition technique based on Multi-Layer Perceptron Neural
Network (MLPNN). The results show an average accuracy of 90.5% in recognizing
the proposed fourteen gestures.
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1. INTRODUCTION
Upper-limb myoelectric prostheses are the next generation devices aimed at helping the amputees who

suffer from the loss of hand. Unlike the traditional hand prostheses which offer cosmetic or body powered lim-
ited functionality to the amputee, the myoelectric prostheses use electromyography (EMG) sensors attached
to the body muscles to control the prosthesis through a controller and motors that move the synthetic hand.
The mechanical aspect of the prosthetics has developed vastly in recent years and many prosthetic hands with
multiple movements and Degree of Freedom (DoF) are made available commercially. Examples of these pros-
thetic hands are Bebionic hand [1], iLimb hand [2], Vanderbilt hand [3], the UNB hand [4], the Yale hand [5],
SmartHand [6], the DLR/HIT hand [7], and the Keio hand [8].

Most of the currently developed myoelectric prostheses suffer from two problems. They either offer
a limited number of hand gestures or poor recognition rate for a larger number of gestures. Since the role of
a prostheses is to approximate the functionality of a real hand, there is a need for a larger number of gestures
to be recognized in a myoelectric prosthesis with high recognition rate. The current paper tries to address the
above problem.

Developing a controller for multiple hand movements that achieves acceptable recognition accuracy
is a challenge. The recognition rate and accuracy of EMG systems has been researched widely in the past [9].
According to [10], the recognition accuracy of such a system will depend mainly on a number of parameters:
EMG electrode location, the signal processing methods, feature extraction techniques, and the classification
algorithms.
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According to [11], in surface EMG, the electrode position is vital for the detection of the signal and can
affect the quality of the signal. EMG data can be different when are obtained from different nearby locations
of the muscle. The use of multi-channel techniques can improve the quality of the signal with respect to the
position of the electrodes. Recently, in some myoelectric prostheses, the Myo armband device has been used
to collect EMG data. The Myo armband consists of eight electrodes which can mitigate the position issue.
Examining the previous work shows that most of the research in the past used between two to eight EMG
sensors in the forearm [12].

In regard to other parameters affecting the recognition accuracy, various feature extraction and clas-
sification algorithms were researched in the previous literature, as summarized in [13]. Recognizing multiple
gestures is a challenge as the recognition accuracy decreases with the increase in the number of gestures.
Table 1 summarizes examples of previous literature attempting to recognize several gestures [10, 14-25].

The proposed method in this work is to use multi-layer perceptron neural network (MLPNN) com-
bined with pre-processing techniques and feature extraction algorithms. In this research, an eight-channel Myo
armband EMG device is used to recognize fourteen hand gestures. These are nine gestures more than the five
built-in gestures the device can recognize. The novelty in this work lies in the recognition of fourteen gestures
with an advanced neural network with high recognition accuracy and improving upon the results reported in
the literature shown in Table 1. To the author’s knowledge, no myoelectric prosthesis is commercially available
today that provides multiple gesture recognition capability. This is due to various factors such as: signifi-
cant processing time of pattern recognition systems, the lack of reliability of these systems (due to electrode
positioning and fatigue), and the lack of intuitive controls [26-28].

Table 1. Recognition accuracy of previous literature with multiple gestures
Reference Features

No. of EMG
Channels

Classifier
No. of

Subjects
Time Length

(seconds)
No. of

Gestures
Recognition

Accuracy (%)
10 I-EMG, MAV, MSR, 6 PCA algorithm and 5 5 6 99.6

VAR, WL, SSI, SVM classifier 11 95.6
SSC, ZC, and WA 17 95.1

14 PSD 6 ANN 12 5 9 72.9
17 63.8

15 IRMS 4 ICA,IRAM,ANN 4 10 4 90.33
16 TD, ACCC, 4 KNN, LDA, SVM 6 0.064 9 91

and SPM
17 PSD-Av 5 PNM 4 1 10 80
18 HD-sEMG 8 MK-MMD 23 3-10 22 84.6
19 Third-order AR 2 Linear Bayesian 4 1 5 90-93.5

model Coefficients, Classifier 11 83.1-95.4
MAV and MAVR 16 78.8-90.3

20 CCA 4 KNN,LDA, and 8 5-10 8 82
LIBSNM

21 MAV 64 HD 5 2 9 78.21
22 MAV,ZC, 2 KNN 30 5 4 94

SSC, and WL
23 MV, WL 4 MLE 8 1-2 8 85.7
24 MAV, AR, 4 SVM,LDA, 18 1 8 89.3

and MNF and HMM
25 MAV,ARSSC 6 SVM 5 4 5 96

ZC,WL, and
RMS

13 RMS, STD, 8 MLPNN 3 5 5 99
MAX, and MIN

This work RMS 8 MLPNN 3 7 14 91-94

The advance of pattern recognition techniques can potentially help recognizing multiple DoF and
mapping them to myoelectric prostheses. However, recognizing gestures which include individual finger move-
ments using the EMG can be a challenging task. The reason is that the EMG signal amplitude variances are
small for finger movements compared to arm and wrist movements [14]. In addition, the muscles responsible
for controlling the movement of fingers are located in intermediate and deep layers of forearm [27]. In order to
recognize various finger movements, multiple EMG sensors are required to provide adequate data.

This paper is organized as follows. Section 2 presents the structure of the Myo armband device, and
the Multi-Layer Perceptron Neural Network (MLPNN). Section 3 presents data collection and the training of
the MLPNN. Results are discussed in Section 4. Finally the conclusion is presented.
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2. THEORY
2.1. Myo armband device

Myo armband is a wearable device that uses eight electrode sensors to measure the EMG signals of
forearm muscles. The device sends these data via Bluetooth to a computer. A special driver program is used to
analyze the signals and recognize hand gestures of the user. The recognized gestures can subsequently be used
by various applications. The Myo armband is also equipped with several other sensors, such as accelerometer,
gyroscope, and magnetometer which collect spatial data about the gesture and can facilitate gesture recognition
(these additional sensors were not utilized in this work). The device should be in direct contact with the user
skin, in order to operate and can work with several operating systems such as Windows, Mac, iOS, and Android.
It is powered by an ARM Cortex M4 processor and uses a rechargeable battery to operate [29-30].

2.2. Multi-layer perceptron neural network
Multi-layer perceptron neural network (MLPNN) is a feed-forward network which contains one or

more invisible layers called hidden layers. The learning process is performed using a supervised method where
the desired output must be known in advance to update the weights of the internal connections between the
layers. This update algorithm is called the backpropagation. In this algorithm the error between the desired
output and the actual output is calculated every time the input/output training data is presented. Connection
weights are continuously adjusted according to the calculated error until the error gradient reaches an appro-
priate small value, which indicates that the actual output is close to the target [31-34].

3. WORK
3.1. Data collection

In this work, data sets of fourteen gestures were collected from three body-able subjects using Myo
armband device, as shown in Figure 1. The first five gestures (1 to 5) were selected based on the standard
Myo Armband gestures. The additional nine gestures were selected based on the natural movement of the hand
and fingers and some local cultural gestures. Each of the fourteen gestures were repeated twice, and the EMG
signal was recorded for a period of seven seconds per gesture with a frequency of 200Hz. Table 2 represents
the hand gesture categories and their description.

Table 2. Hand gestures categories and the description
Modes Gestures Description
Relax Rest The relax state
Wrist Movements Wave right Wave hand to the right

Wave Left Wave hand to the left
Individual Finger Movements One Finger Raise the index finger up

Thumb Raise the thumb up
Multi-Fingers Movement Spread Fingers Spread all fingers

Fist Fist state
Two Fingers Raise the index and middle fingers up
Three Fingers Raise the index, middle and ring fingers up
Four Fingers Raise all fingers except the thumb up
Grab Grab gesture (a glass or bottle)
Pinch Pinch the fingers
Shake no Thumb Shake state while holding thumb inside
Shake Hand Shake state with thumb up

Each gesture’s data was stored as a sequence with a length varying between 1398 to 1408 EMG values
(elements). A remove-silence process was applied to the data followed by removing the extra elements to create
equal data sets. Furthermore, the elements in the data sets were overlapped to maximize number of samples.
This yielded a data set with a dimension of 50x117 per gesture per EMG channel.

Four features, namely Root Mean Square (RMS), Standard Deviation (STD), minimum (Min) and
maximum (Max) values, were extracted from each gesture sequence. This process has obtained a (4x117)
matrix of features per each EMG channel. For 8 channels, the result was a (32x117) features’ matrix per
gesture. 80% of the obtained data were used for training (input vector), 10% were used for validation and the
remaining 10% were used for testing the neural network.
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Figure 1. Representation of the fourteen gestures used in the work

3.2. Training of MLPNN
For the pattern recognition, a classifier was designed using the MLPNN and based on time domain

features of RMS, STD, Min and Max. The structure of the MLPNN was configured with one hidden layer to
reduce processing time in the training process. The number of hidden neurons was selected based on trial and
error and from experience to achieve the lowest RMS error possible. In addition, the aim was to minimize the
number of training epochs in the network.

Figure 2 shows the neural structure that was used for training. The classifier consisted of 32 neurons
in the input layer, 30 hidden processors with tangent function, and 14 output neurons with sigmoidal function
to classify 14 determined gestures. Gradient descent back-propagation was used as a training algorithm with
an adaptive learning rate to minimize the risks of local minima errors.

The training must be terminated if any of the stopping criteria is obtained to prevent the over fitting
problem. These criteria were set to 1000 training iterations and an RMS error of 0.001. Figure 3 shows the
algorithms used for training and testing of the MLPNN classifier.
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Figure 2. Structure of neural classifier
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Figure 3. Algorithms used for (a) the training, and (b) the testing of MLPNN classifier

4. RESULTS
Figure 4 shows the performance of the network at training, validation, and test processes. It can be

observed that the network was successfully trained with a validation performance of 0.001541. Figure 5 shows
the error gradient for all training epochs with the RMS value of 0.00035374 at epoch 101. Number of validation
checks was set to six. This validation check was achieved at epoch 101 as shown in the figure.
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Figure 4. Performance of the neural network at training, validation, and test processes

Figure 5. Results of training MLPNN: the x-axis shows the number of epochs, the y-axis is the gradient of
error at the top and the validation check value at bottom subfigure

Figure 6 shows the real performance of the MLPNN at the end of the training and testing processes.
The gesture number and the class number are represented at X-axis and Y-axis respectively. The training results
provide a perfect classification with high accuracy for all of the gestures. The class number of the gesture at
any testing process is defined by the largest value from all neurons at the output layer of MLPNN. For binary
patterns, the output of the categorized gesture must have a value of one, and the output of the other gestures
must have a value of zero. Table 3 shows the numerical representation of gesture classes.
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Figure 6. Real performance of MLPNN at (a) training process, (b) testing process

The segmentation and overlapping methods that were used in this work as part of the data pre-
processing improved upon the training efficiency by increasing the number of training samples. The accuracy
of the trained MLPNN is evaluated by calculating the number of correctly recognized classes in the test pro-
cess. Thus the recognition rate is calculated by:

RecognitionRate = (CorrectlyClassifiedSamples/AllTestSamples) ∗ 100 (1)

Table 4 shows the recognition rates results for the three body able subjects. The recognition accuracy
was up to 94%. Comparing these results to the previous EMG based recognition systems utilizing neural
networks shows that a better recognition accuracy was achieved in this work with respect to number of gestures
that can be recognized as shown in Table 5. To the authors knowledge, there were no work available using the
Myo armband for recognition of multiple gestures for comparison purposes.

The previous work of the same authors reported 99% of accuracy using similar neural network and 5
gestures. Hence adding 9 new gestures decreased the accuracy of the system to 90.5%. The decreased accuracy
can be attributed to an increase in the number of gestures that are differentiated based on finger movements.
The EMG signal amplitude variances are small for finger movements compared to arm and wrist movements
which results in similar extracted features and less accurate recognition.

Table 3. Assigned class numbers to the gestures
Gestures Rest

Spread
fingers

Fist
Wave
Right

Wave
Left

One
Finger

Two
Finger

Three
Finger

Four
Finger

Thumb Grab Pinch
Shake no
Thumb

Shake
Hand

Real O/P 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table 4. Recognition rates of the three subjects
Subject No.

1st Set
Recognition Rate %

2nd Set
Recognition Rate %

Recognition
Average %

1 89 89 89
2 89 91 90
3 91 94 92.5

Table 5. Comparison of results with other ANN classifiers in the literature
Reference

No. of EMG
Channels

No. of
Subjects

Time Length
(seconds)

No. of
Gestures

Recognition
Accuracy (%)

14 6 12 5
9 72.9

17 63.8
15 I4 4 10 4 90.33
13 8 3 5 5 99

This work 8 3 7 14 90.5
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5. CONCLUSION
This research proposed using an MLPNN to classify and recognize additional gestures from the Myo

armband device. The proposed system works by measuring the raw EMG signals from the forearm and esti-
mating the muscles activity by extracting the effective time domain features such as RMS, STD, Min and Max.
Then the system trains the MLPNN to classify different finger and wrist gestures. The main contribution of this
work is the accurate recognition of fourteen gestures using the Myo armband device which can only recognize
five gestures. The proposed pre-processing technique based on time domain feature extraction improved the
training process and was effective for the recognition of gestures.

The results showed an average recognition accuracy of 90.5% for all the test data. Based on these
results, the proposed method can be used as a reliable classifier for different hand gestures in applications
where recognizing as many gestures as possible is important such as multi-gesture prosthetic hands. The
implemented system can also contribute to the advancing of the intelligent interaction between the human and
instruments such as myoelectric prosthetic hands, machine control and Human Computer Interface (HCI).

Future work can design and implement a manageable system for recognition of hand gestures using
hardware implementation techniques such as Field Programmable Gate Array (FPGA). The error in recognition
could be due to convergent gestures. The trained MLPNN may mis-classify these gestures as a result of similar
features calculated from comparable raw EMG signals due to the contiguity of their associative muscles. The
mis-recognized gestures vary depending on the subject under test, since each subject could perform the same
gesture slightly different each time. An extension to this work can research methods to deal with these incorrect
recognitions in order to improve the accuracy of the system. Finally, An MPLNN based recognition algorithm
trained by back-propagation could suffer from local minima or high computational cost. Future work needs
to examine other intelligent algorithms such as Adaptive Neuro Fuzzy Inference System (ANFIS) for gesture
recognition.
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