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 Due to its efficiency in storage and search speed, binary hashing has become 

an attractive approach for a large audio database search. However, most 

existing hashing-based methods focus on data-independent scheme where 

random linear projections or some arithmetic expression are used to construct 

hash functions. Hence, the binary codes do not preserve the similarity and 
may degrade the search performance. In this paper, an unsupervised 

similarity-preserving hashing method for content-based audio retrieval is 

proposed. Different from data-independent hashing methods, we develop a 
deep network to learn compact binary codes from multiple hierarchical layers 

of nonlinear and linear transformations such that the similarity between 

samples is preserved. The independence and balance properties are included 

and optimized in the objective function to improve the codes. Experimental 
results on the Extended Ballroom dataset with 8 genres of 3,000 musical 

excerpts show that our proposed method significantly outperforms state-of-

the-art data-independent method in both effectiveness and efficiency. 
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1. INTRODUCTION 
With rapidly growing database of digital audio recordings, the novel retrieval strategies have 

received great attention. Early retrieval approach uses textual metadata describing the content of music audio 

(e.g., artist name, song title, album name, genre, or release year of music). In case such descriptions are not 

available, it is required content-based retrieval strategy that the perceptual aspects of the audio are utilized. [1]. 

Content-based audio retrieval approach is generally solved with two steps: first, features are 

extracted from the audio file and then used to build indexes for searching. Two main issues of performing a 

search over a large database are search speed and efficient storage. The most interesting approach for handling 

these problems is binary hashing, where the high-dimensional features are encoded into compact binary codes. 

There have been several hashing methods proposed in the literature. They can be devided into two 

categories, data-independent methods and data-dependent methods. Methods in data-independent category [2-7] 

use random linear projections or some arithmetic expression to construct hash functions. Without the training 

process, they are robust to data variation. However, such methods require long hash codes to achieve high 

precision. This increases the storage cost and degrades the search efficiency [8]. 

Methods in data-dependent category, also called learning to hash methods, aim to learn a set of hash 

functions from available training data that yield compact codes to achieve satisfactory search performance [9]. 

Existing data-dependent methods can be classified into unsupervised, supervised, and semi-supervised 
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learning approach. Unsupervised hashing methods [10-12] use unlabeled data to build the hash functions 

where the neighbor distance (e.g., L2 norm) among the training data is preserved. Supervised or semi-

supervised hashing methods [13-17] attemp to improve the quality of hashing by leveraging the semantic 

labels into the learning process. Compared with data-independent methods, it appears that data-dependent 
methods can achieve better accuracy with shorter codes [12, 14, 17]. However, data-dependent methods may 

be too dependent on the training data [18]. 

There are both advantages and shortcomings of using data-independent and data-dependent 

methods. However, the previous works of the two categories do not fully take into consideration the 

similarity preserving and this may degrade the retrieval performance. In this work, an unsupervised 

similarity-preserving hashing method for content-based audio retrieval is proposed. We develop a deep 

network with several hierarchical layers of nonlinear and linear transformations to learn compact binary 

codes where the similarity between samples is preserved. Furthermore, the independence and balance 

properties are included in the objective function to improve the codes. The proposed method is compared 

with the Shazam algorithm [3], the data-independent hashing method, in terms of accuracy, precision, recall, 

false positive rate, and the storage cost. 

 

 

2. BACKGROUND 

2.1. Learning to hash 
Learning to hash attempts to learn a hash function  𝑦 = ℎ(𝑥) that maps a high-dimensional input 

item  𝑥 ∈ 𝑅𝐷 to a compact code  𝑦, aiming to improve the search performance [19]. There are 4 topics to 

consider for the learning to hash: (1) hash function, (2) similarity-preserving, (3) loss function, and (4) deep 

learning to hash. 

 

2.1.1. Hash function 
There are several ways to design hash functions. The most widely used hash functions are 

generalized by linear projection as shown in (1). 

 

𝑦 = ℎ(𝑋) = sgn(𝑓(𝑊𝑇𝑋 + 𝑏)) 


where 𝑦 ∈ {0,1} or {−1,1}, 𝑋 = {x𝑛}𝑛=1

𝑁 ∈ 𝑅𝐷x𝑁 is the training set which contains 𝑁 samples, 𝐷 is  

the dimension of input vector, 𝑊 = {𝑤𝑘}𝑘=1
𝐾 ∈ 𝑅𝐷x𝐾  is the projection vector, 𝐾 is number of hash bits, 𝑏 is 

the bias variable, sgn(𝑧) = −1 or 0 if 𝑧 < 0 and sgn(𝑧) = 1 otherwise, 𝑓(∙) is a predefined function which 

can possibly be neural networks or nonlinear function. However, using different 𝑓(∙) yields different hash 

function properties. 
 

2.1.2. Similarity-preserving 
The distance 𝑑𝑖𝑗 between two items 𝑥𝑖 and 𝑥𝑗 can be defined by the standardized Euclidean distance 

‖𝑥𝑖 − 𝑥𝑗‖
2

 or others. The similarity 𝑠𝑖𝑗 between those items is often defined as a function of the distance 𝑑𝑖𝑗 

(e.g., Gaussian function, cosine similarity, and so on). In addition, the semantic similarity approach is 

generally used in similarity search application. We can apply any distance to the hashing algorithm for 

semantic similarity, such as Euclidean distance, by defining semantic similarity 𝑠𝑖𝑗 = 1 for adjacent points 

and 𝑠𝑖𝑗 = 0 or −1 for farther points. 

In the hash coding space, the Hamming distance 𝑑𝑖𝑗
𝐻  between the code 𝑦𝑖 and 𝑦𝑗 can be defined as 

‖𝑦𝑖 − 𝑦𝑗‖
1

= ∑ ‖ℎ𝑘(𝑥𝑖) − ℎ𝑘(𝑥𝑗)‖𝐾
𝑘=1 . It is the number of binary digits where the values are different. 

Hamming similarity is defined as 𝑠𝑖𝑗
𝐻 = 𝐾 − 𝑑𝑖𝑗

𝐻  for the codes valued by 1 and 0. For the codes valued by 1 

and -1, the inner product 𝑠𝑖𝑗
𝐻 = 𝑦𝑖

𝑇𝑦𝑗 is defined as the similarity. 

Let’s focus on the term of similarity preserving. In Figure 1(a), there is a set of three points (𝑥1, 𝑥2, 

and 𝑥3) in an input space. By measuring the Euclidean distance between the points, we can find that 𝑥1 is 

closer to 𝑥2 than to 𝑥3, i.e., 𝑥1 is more similar to 𝑥2 than 𝑥3. The ℎ(𝑥1), ℎ(𝑥2), and ℎ(𝑥3) are  

the representations of 𝑥1, 𝑥2, and 𝑥3 in the hash coding space (or Hamming space), respectively.  

From the Figure 1(b), we can see ℎ(𝑥1) is closer to ℎ(𝑥3) while ℎ(𝑥2) is far away. In this case, it shows that 

the similarities are not preserved. Figure 1(c), on the other hand, shows an example of the similarities that are 

well preserved.  



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Similarity-preserving hash for content-based audio retrieval using … (Petcharat Panyapanuwat) 

881 

Similar

x1

x2 x3

Dissimilar

Hamming Space (2-dim)

h(x2)

h(x3)

0

1

1

h(x1)

Hamming Space (2-dim)

h(x1)

h(x2)

h(x3)

0

1

1

Similarities are not 

preserved

Similarities are 

well preserved

Hashing

H
ash

in
g

(a) (b)

(c)  
 

Figure 1. Similarity-preserving hashing 

 

 

2.1.3. Loss function 
The loss function is intended to preserve the similarity order, i.e., minimize the difference between 

the nearest neighbor search result in the hash coding space and the search result in the input space. The loss 

function 𝐿𝑜𝑠𝑠(𝑋, 𝑊) is defined as follows: 

 

𝐿𝑜𝑠𝑠(𝑋, 𝑊) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ‖𝑑𝑖𝑗 − 𝑑𝑖𝑗
𝐻 ‖

2

𝑁
𝑥𝑖,𝑥𝑗∈𝑋  

 

where 𝑋 is the input data, and 𝑊 is the projection vector. 

Specifically, 𝑦𝑖 = ℎ(𝑥𝑖) needs to be binary. This binary constraint leads to a difficult optimization 
problem. To solve the problem, we drop the binary constraint and let the codes be continuous. The codes are 

then binarized with thresholding. For binary constraint relaxation, various standard optimization techniques 

can be applied. 

 

2.1.4. Deep learning to hash 
The goal of learning to hash is to learn the specific hash functions that map high dimensional input 

vector to a compact binary vector that yields a good quality of retrieval and search speed [20]. For unlabeled 

data, an illustration of unsupervised deep learning to hash model that map the input vector 𝑥 ∈ 𝑅𝐷 to 

compact binary codes is shown in Figure 2. 
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Figure 2. Unsupervised deep learning model 
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Assume that an unsupervised deep network consists of L+1 layers. A binary vectoy 𝑦𝑖 is generated 

by passing the input vector 𝑥𝑖 through the network that contains multiple hierarchical layers of nonlinear 

functions. The binary code of 𝑥𝑖 at Lth layer can be calculated as follows: 
 

𝑦𝑖 = ℎ(𝑥𝑖) = 𝑠𝑔𝑛(𝐹(𝑥𝑖 , 𝑊)) 
 

where 𝐹(𝑥𝑖, 𝑊) is a composition of nonlinear transformations defined as follows: 
 

𝐹(𝑥𝑖, 𝑊) = 𝑓𝐿 (∙∙∙ 𝑓2 (𝑓1(𝑥𝑖, 𝑤(1)), 𝑤(2)) ∙∙∙ 𝑤(𝐿)) 

 

where the vector 𝑥𝑖 and the weight vector 𝑤(𝑙) are used as input, the projection 𝑥𝑖+1 is produced by 𝑓𝑖(∙). The 

learning algorithm aims to learn a set of nonlinear weight vectors 𝑊 = {𝑤(1), … , 𝑤(𝐿)} where the information 

from the input space is preserved. 

 

2.2.  Search with hashing 
There are two strategies to perform a search with hashing, hash code ranking and hash table lookup [19]. 

For the hash code ranking, an exhaustive search is performed by comparing the distance (e.g., Hamming 

distance) between the query and the reference items. The items with the smallest distances, called nearest 

neighbors, are retrieved. However, the cost of computing the distance results in performance degradation. 

The alternative approach, hash table lookup aims to accelerate the search by reducing the distance 

computations. The inverse lookup database, called hash table, is composed of buckets which are indexed by 

the hash codes. Given the query, the matching items storing in the bucket are retrieved. 

 

2.3.  Audio fingerprinting 
Audio fingerprinting is best known for its ability to identify an uknown audio recording by using its 

compact content-based signature so-called fingerprint [21]. It does this by converting the audio features into 
hash codes, aiming to uniquely identify an audio recording. The advantage of fingerprint is that, it reduces 

storage costs as fingerprint is relatively small. Moreover, the perceptual irrelevancies have been removed 

from fingerprint, resulting in efficient comparison and searching. 

 

 

3. METHOD 
The aim of this paper is to provide an efficient technique that yields a good quality of retrieval and 

computational efficiency. In this work, compact binary codes are learned for fingerprint indexing with 

unsupervised deep network in a way that the similarity between samples is preserved. Once, a short audio 

sample is taken to our content-based audio retrieval system, the system performs database lookup for 

matching track and then returns the song ID that the query is taken. As shown in Figure 3, the system is 

designed with three steps: (1) Fingerprint feature extraction, (2) Unsupervised similarity-preserving hashing, 

and (3) Sequence matching. 
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Figure 3. The construction of proposed method for our content-based audio retrieval system 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Similarity-preserving hash for content-based audio retrieval using … (Petcharat Panyapanuwat) 

883 

3.1.  Fingerprint feature extraction 
Before fingerprint feature extraction is performed, the audio signal is converted into a common 

format for analysis. Next, the time-series audio signal is converted into time-frequency domain from which 

more meaningful information can be extracted. Below each aspect is detailed. 

 

3.1.1. Preprocessing and transform 
In this paper, the fingerprint extraction presented in [3] is applied. Firstly, we convert the input 

audio to mono signal and downsampled from the standard digital audio of 44.1KHz, to 8KHz, to make  

the data easier to handle, reducing database size, and increasing speed of the algorithm. The audio signal is 

then converted into the time-frequency representation. We perform a short-time fourier transform (STFT) 

with a window size of 64 ms. for good spectrum resolution [22] and a hop size of 32 ms. Figure 4 shows 

time-frequency graph so-called a spectrogram. On the horizontal axis is time, on the vertical is frequency, and 

on the third is intensity. Each point on the graph represents the intensity of a given frequency at specific time. 

 

 

 
 

Figure 4. Spectrogram with peak intensities 

 

 

3.1.2. Feature extraction 
After converting the signal into the time-frequency domain, the features are then extracted from  

the spectrum. Due to their robustness to noise and distortions, the amplitude peaks in each frame are selected 

as candidate points. Each candidate point is paired with the adjacent peaks. The constellation map of paired 

points with coordinate list is shown in Figure 5. In this work, each candidate point is paired within 31 

frequency bins and 63 time frames. Only the closest 3 peaks in time to each other are selected. Figure 6 

shows the combinatorial association of a pair of two points which is called a ‘landmark’. For each pair, it consists 

of four components, the starting frequency 𝑓1 , the starting time 𝑡1, the end frequency 𝑓2, and the end time 𝑡2. 
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3.1.3. Audio fingerprint 
For the landmark as mentioned above, the audio fingerprint can be defined as follows: 
 

𝐹𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡 =  [𝑓1 , Δ 𝑓, Δ𝑡] 

 

where the frequency difference ∆𝑓 = 𝑓2 − 𝑓1, and the time difference between the two points ∆𝑡 = 𝑡2 − 𝑡1. 

The fingerprint is also associated with the offset time from the beginning of the audio file to the starting time 𝑡1. 

This fingerprint feature [𝑓1 , Δ 𝑓, Δ𝑡] is used to generate hash code in [3]. The hash model can be 

defined as shown in (6). 
 

𝑓1 × 212 + ∆𝑓 × 26 + ∆𝑡  
 

where a fingerprint hash is composed of 8-bit frequency 𝑓1, 6-bit frequency difference ∆𝑓, and 6-bit time 

difference ∆𝑡. Figure 7 shows an example of 20-bit hash address calculated from (6). 
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Figure 7. An example of 20-bit hash address 
 
 

For a 16-bit fingerprint hash, it is composed of 6-bit frequency 𝑓1 , 5-bit frequency difference ∆𝑓, 

and 5-bit time difference ∆𝑡. The hash model can be defined as shown in (7). 
 

𝑓1 × 210 + ∆𝑓 × 25 + ∆𝑡 (7) 
 

After the hash code is calculated, the system then uses this code as an index for searching in  

the database. An exact matching algorithm is applied in [3]. Unlike the Shazam algorithm, we develop a deep 

neural network with multiple hierarchical layers of nonlinear and linear transformations to learn compact 

codes from these fingerprint features such that the similarity between samples is preserved. The details are 

described further in the next section. 

 

3.2. Unsupervised similarity-preserving hashing (USH) 
In this paper, the hash transformations are created by an unsupervised deep neural network.  

As shown in Figure 8, there are 5 layers in our deep network: the input layer consists of 20 nodes of input 𝑥𝑖, 

the three hidden layers consist of 19, 18, and 16 nodes respectively, and there are 20 nodes of 𝑥𝑖 ̂ in  

the output layer.  
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Figure 8. Our proposed unsupervised similarity-preserving hashing network (USH) 
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Our deep network is learned so that the output of the fourth layer can be used as the binary hash codes.  

For the network design, each node is composed of one input summation function and one output transformation 

function. The function f(∙) is used to combine information by the links from other nodes, as shown in (8). 

 

𝑛𝑜𝑑𝑒𝑖𝑛 = 𝑓(𝑥(𝑙),1 , 𝑥(𝑙),2 , … , 𝑥(𝑙),𝑛 ; 𝑤(𝑙),1 , 𝑤(𝑙),2 , … , 𝑤(𝑙),𝑛) (8) 

 

where 𝑥(𝑙),1 , 𝑥(𝑙),2 , … , 𝑥(𝑙),𝑛  are the inputs to the node, 𝑤(𝑙),1 , 𝑤(𝑙),2 , … , 𝑤(𝑙),𝑛 are the associated weights,  

𝑙 indicates the layer number, and 𝑛 is the number of input nodes. The output activation function 𝑎(𝑓(∙)) is 

shown in (9). 

 

𝑛𝑜𝑑𝑒𝑜𝑢𝑡 = 𝑎(𝑙)(𝑛𝑜𝑑𝑒𝑖𝑛) = 𝑎(𝑙)𝑓(∙) (9) 

 

Let 𝐻𝑖  be the sum of product of input 𝑥𝑖 and weight 𝑤𝑖, 𝐻𝑖 = ∑ 𝑤𝑖 𝑥𝑖, the functions of the nodes 

from layer 1 to layer 5 of our proposed network are defined as follows: 

Layer 1: In this layer, the nodes only convey inputs to the nodes of the next consecutive layer.  

The functions of the 𝑖th node are shown as; 

 

𝑓(1),𝑖 = 𝑥(1),𝑖 and 𝑎(1),𝑖 = 𝑓(1),𝑖  

 

Layer 2: For this layer, the sigmoid function is used as activation function. Let 𝑥(2),𝑖 = 𝑎(1),𝑖 and 

𝐻(2),𝑖 = ∑ 𝑤(2),𝑖 𝑥(2),𝑖 . Thus, the functions of the 𝑖th node are defined as; 

 

𝑓(2),𝑖 =  
1

1+𝑒
−𝐻(2),𝑖

  and 𝑎(2),𝑖 = 𝑓(2),𝑖  


Layer 3: In this layer, the sigmoid function is applied for activation function. Let 𝑥(3),𝑖 = 𝑎(2),𝑖 and 

𝐻(3),𝑖 = ∑ 𝑤(3),𝑖 𝑥(3),𝑖 . The functions of the 𝑖th node are defined as; 

 

𝑓(3),𝑖 =  
1

1+𝑒
−𝐻(3),𝑖

   and  𝑎(3),𝑖 = 𝑓(3),𝑖  

 

Layer 4: The output of each node in this layer will be used as the binary codes. During training, 

these codes are used to reconstruct the input data at the output layer. The hyperbolic tangent function is 

particularly used as activation function in this layer. Let 𝑥(4),𝑖 = 𝑎(3),𝑖 and 𝐻(4),𝑖 = ∑ 𝑤(4),𝑖 𝑥(4),𝑖 .  

The functions of the 𝑖th node are defined as; 

 

𝑓(4),𝑖 =  
𝑒

𝐻(4),𝑖−𝑒
−𝐻(4),𝑖

𝑒
𝐻(4),𝑖+𝑒

−𝐻(4),𝑖
  and 𝑎(4),𝑖 = 𝑓(4),𝑖  


Layer 5: This layer is the output or reconstruction layer. To preserve the similarity between samples, 

thus, the target outputs are given the same as the inputs of layer 1. Let 𝑥(5),𝑖 = 𝑎(4),𝑖  and 𝐻(5),𝑖 =
∑ 𝑤(5),𝑖 𝑥(5),𝑖. The functions of the 𝑖th output node are defined as; 

 

𝑓(5),𝑖 = 𝐻(5),𝑖   and  𝑎(5),𝑖 = 𝑓(5),𝑖  


To achieve the efficient binary codes, we include constraints in the objective function so that  

the codes have 4 properties: (1) belonging to {1, -1}, (2) similarity-preserving, (3) independent, and (4) 

balancing. In this paper, the method presented in the UH-BDNN [23] is applied to optimize the objective 

function which is defined as follows: 

 

𝑚𝑖𝑛𝑊,𝑏 𝐿𝑜𝑠𝑠 =
1

2𝑁
‖𝑋 − (𝑊(𝐿−1)𝑌 + 𝑏(𝐿−1) × [1]1×𝑁)‖

2
 

 +
𝜆1

2
∑ ‖𝑊(𝑙)‖

2𝐿−1
𝑙=1 +

𝜆2

2𝑁
‖𝐻(𝐿−1) − 𝑌‖

2
  

+
𝜆3

2
‖

1

𝑁
𝐻(𝐿−1)𝐻(𝐿−1)

𝑇 − 𝐼‖
2

+
𝜆4

2𝑁
‖𝐻(𝐿−1)[1]𝑁×1‖

2
 (15) 

 

𝑠. 𝑡. 𝑌 ∈ {1, −1}𝐾×𝑁  
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where 𝑋 ∈ 𝑅𝐷×𝑁 is a set of 𝑁 training data with 𝐷 dimension, 𝑌 ∈ {1, −1}𝐾×𝑁 is output binary code of 𝑋, 𝐾 

is number of bits, 𝐿 is number of layers, 𝑊(𝑙) is weight matrix between layer 𝑙 + 1 and layer 𝑙, 𝑏 is bias vector 

for nodes in layer 𝑙 + 1, 𝐻(𝑙) = 𝑓(𝑙)(𝑤(𝑙−1)𝐻(𝑙−1) + 𝑏(𝑙−1)[1]1×𝑛) is the output values of layer 𝑙, 𝐻(1) = 𝑋,  𝑓(𝑙) is 

activation function of layer 𝑙, and 𝜆1 - 𝜆4 are the parameters for optimizing the objective function. 

The first term of (15) makes sure that the binary code allows a good reconstruction of 𝑋. The second 

term is a weight regularization that encourages the network to keep the weights small in order to reduce 

overfitting. The third term measures the equality constraint violation. The fourth term is the independence, 

and the fifth term is balance of the binary codes. As shown in (16) is to ensure that each bit of the binary 

codes belongs to {1, -1}. After the efficient codes are produced from deep-learning network, these codes are 

used as search index in our content-based audio retrieval system. The song ID, 𝑡1, 𝑓1, ∆𝑓 and ∆𝑡 are stored at 

their hash address in the database. Table 1 shows the representation of information data. 

 

 
Table 1. Representation of information data 

Method Index Information data 

USH 16 bits Hash Address Song ID, 𝑡1 , 𝑓1 , ∆𝑓, ∆𝑡 

Shazam [3] 16-bit / 20-bit Hash Address Song ID, 𝑡1  

 

 

3.3.  Sequence matching 
For the query step, a sequence of query features is generated to a set of compact hash codes and 

used for searching in the inverse lookup database. Let 𝑄 represent a set of sequences of query features,  

𝑄 = {𝑞1 , 𝑞2 , … , 𝑞𝑀}, where 𝑞𝑚  is a query at oreder 𝑚, 𝑚 = 1, 2, … , 𝑀, and 𝑀 is the total number of 

sequences. The learning hash function 𝐻: 𝑞𝑚 → ℎ(𝑞𝑚), is used to map the query features to binary hash 

codes. We can define 𝑄 = {𝑞𝑚}𝑚=1
𝑀  to the corresponding binary codes as follows: 

 

𝑌 = 𝐻(𝑄) = {ℎ(𝑞1), ℎ(𝑞2), … , ℎ(𝑞𝑀)} 
 

where 𝑌 is the hash codes of 𝑄, 𝑌 ∈ {1, −1}𝐾𝑥𝑄, and 𝐾 is the number of bits. After learning deep network, 

we obtain a set of items that indexed by the hash address. Let 𝑠𝑚 = {𝒙𝑚1, 𝒙𝑚2 , … , 𝒙𝑚𝑛𝑚
} be a set of items of 

𝑞𝑚 , 𝒙𝑚𝑖 ∈ 𝑅5x1 be the information vector that are stored in the database, and 𝑛𝑚  is the number of items of 

𝑞𝑚 . Given 𝑆 = {𝑠𝑚}𝑚=1
𝑀  is a set of 𝑠𝑚 where 𝑚 = 1,2, … , 𝑀, the sequence matching process is shown in Figure 9. 

 
 

A Sequence of Queries

Q = {q1, q2, q3}
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Figure 9. Our proposed sequence matching 
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As can be seen in Figure 9, assume that 𝑄 = {𝑞1 , 𝑞2 , 𝑞3}, and get the binary codes 𝐻(𝑄), we obtain a 

set of 𝑠𝑚, 𝑠1 = {𝑥11, 𝑥12, 𝑥13, 𝑥14}, 𝑠2 = {𝑥21, 𝑥22}, 𝑠3 = {𝑥31, 𝑥32,  𝑥33}, and 𝑆 = {𝑥11 , 𝑥12 , 𝑥13 , 𝑥14 , 𝑥21, 𝑥22, 

𝑥31, 𝑥32 , 𝑥33}. One nearest neighbor search 𝑁𝑁(𝑞𝑚) for a query item at order 𝑚 from 𝑠𝑚 is defined as follows: 
 

𝑁𝑁(𝑞𝑚) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝑚𝑖∈𝑠𝑚
‖𝑥𝑚𝑖 − 𝑞𝑚‖2 

 
where ‖𝑥𝑚𝑖 − 𝑞𝑚‖2 is the 𝐿2-norm between 𝑥𝑚𝑖 and sequences 𝑞𝑚 . Given 𝑅𝑄 = {𝑁𝑁(𝑞𝑚)}𝑚=1

𝑀  is  

a candidate items set of 𝑄. We also apply a time offset constraint for improving the accuracy of the sequence 

matching. The time offset constraint |𝑇𝑥𝑚
 − 𝑇𝑞𝑚

| is the absolute difference between 𝑇𝑥𝑚
 and 𝑇𝑞𝑚

. It can be 

defined as follows: 

 

|𝑇𝑥1
− 𝑇𝑞1

| = ⋯ = |𝑇𝑥𝑚
− 𝑇𝑞𝑚

| 

 

where 𝑇𝑥𝑚
 and 𝑇𝑞𝑚

 are the offset time of reference file 𝑥𝑚 and query 𝑞𝑚 , respectively. The constraint of 

offset time can be analyzed that a sequence of candidate items should occur with the same absolute 

difference among the time sequences. Our proposed has the following procedures. 

In summary, the proposed audio retrieval algorithm is based on two parts, the similarity (minimum 

distance) between the audio query and the song in the reference database, and the absolute difference among 

the time sequences. 

 

Algorithm: Similarity-preserving hash for content-based audio retrieval using unsupervised deep neural networks 
Input: 

     𝑀 = {𝑚𝑖}𝑖=1
𝑁
 

     𝑄 

 

𝑁 reference set; 

query set; 

Output: 
SID 

 

Song ID is returned by proposed algorithm. 

Step 1: Extracting fingerprint features 𝑋 = {𝑥𝑖}𝑖=1
𝑁 ∈ 𝑅𝐷×𝑁

 from the reference dataset. 

Step 2: Learning hash where 𝑥𝑖 ∈ 𝑅𝐷 is an input vector. The objective function defined as equations 

15-16. In this step, we apply the learning function ℎ(𝑞) for audio fingerprint 𝑞 in step 3. 

Step 3: Sequence matching 

1. The query sample is divided into 𝑀 fingerprints 𝑄 = {𝑞𝑚}𝑚=1
𝑀  

2. 𝑠𝑖 = { }, 𝐴 = { }, 𝑆 = { }, 𝑅𝑄 = { } 

for 𝑖 = 1, 2,  , 𝑀 do 

   𝑖𝑛𝑑𝑒𝑥𝑖  = ℎ (𝑞𝑖) 
   𝑠𝑖  = all items in 𝐴(𝑖𝑛𝑑𝑒𝑥𝑖) are collected into 𝑠𝑖 

   𝑆 =  𝑆 ∪  𝑠𝑖 

end 

for 𝑖 = 1, 2,  , 𝑀 do 

  Aux = maxValue 

  for 𝑗 = 1, 2,  , sizeOf(𝑠𝑖) do 

      if ‖𝑥𝑗 − 𝑞𝑖 ‖
2
 < Aux 

         Aux = ‖𝑥𝑗 − 𝑞𝑖 ‖
2
 

         absTime = |𝑇𝑥𝑗
− 𝑇𝑞𝑖

| 

         SID = 𝑆𝐼𝐷𝑥𝑗
 

      end 

  end 
  𝑅𝑄  =  𝑅𝑄  ∪ {𝑆𝐼𝐷, 𝑎𝑏𝑠𝑇𝑖𝑚𝑒} 

end 

3. Finding max frequency of each Song ID of 𝑅𝑄 where they have same absolute difference 

among the time sequences. 

 

 

4. EXPERIMENTAL AND PERFORMANCE ANALYSIS 

4.1.  Database 
The performance of our proposed USH method is evaluated on the Extended Ballroom dataset freely 

available in [24, 25]. The dataset consists of 4,180 musical excerpts of 13 genres with a length of 30 seconds 

each. The audio quality of this data is 44.1kHz, 192-kbps, stereo, mp3 format. In this work, the audio signal 

is downsampled to 8KHz. to make the data easier to handle as previously mentioned. The training set  

(also used as reference database for retrieval) is composed of 3,000 tracks from 8 genres, the same rhythm 

class as our previous works [26, 27]. A set of 1,000 audio queries with a length of 10 seconds each are 
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randomly selected from those 3,000 tracks. Another set of 200 audio queries comes from audio files that 

do not appear in the database, in order to analyze the false positive rate. Each audio sample is represented by  

a 20-dimensional feature vector extracted by fingerprint algorithm. Table 2 shows the number of samples in  

the database and the query set. 
 

 

Table 2. Audio samples in the database and query set 
Set Number of tracks Length of segment (s) Number of samples 

Database 3,000 30 441,184 

Query 1,200 10 67,785 

 
 

4.2.  Performance evaluation 

4.2.1. Effectiveness of retrieval 
On a total of 1,200 audio queries, the retrieval results obtained from our proposed USH method and 

state-of-the-art data-independent method, the Shazam algorithm, are shown in Table 3. The false negative 

(FN) refers to the incorrect identification that the query audio does not exist in the database when it does, 

true positive (TP) refers to the correct identification of the audio recording from the query, false positive (FP) 

refers to the incorrect identification of the wrong recording when the correct recording does not exist in the 

database, and true negative (TN) refers to the correct identification that no audio recording matches the query. 

According to the experimental results, we obtain higher percentage of accuracy (88.92%) for the proposed USH 

than state-of-the-art data-independent method, the Shazam algorithm (71.67% for 16-bit hash code, 87.42% 

for 20-bit hash code). Figure 10 shows the retrieval accuracy comparison between the two different methods. 

 

 

Table 3. Retrieval results comparison between USH and state-of-the-art data-independent method 
Method FN TP FP TN 

USH 16-bit 114 886 19 181 

Shazam 16-bit 290 710 50 150 

Shazam 20-bit 132 868 19 181 

 

 

 
 

Figure 10. The retrieval accuracy of the proposed USH and the Shazam algorithm 

 

 

The effectiveness of the USH is evaluated through the experiments and compared with state-of  

the-art data-independent method in terms of precision, recall, F1 score, and false positive rate [28], as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100 (20) 



𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100 (21) 

 

F1 𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  x  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (22) 

 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
× 100 (23) 

 

As can be seen in Table 4, we obtain higher precision and recall values for the proposed USH than 

state-of-the-art data-independent method both in 16-bit and 20-bit hash code. The F1 score (in the fourth 

column) shows the overall effectiveness of two different methods. Furthermore, the USH has a significantly 
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lower percentage of false positives (9.50%) than state-of-the-art data-independent method (25.00%) for  

the same 16-bit hash code. Its shows the superior performance of the USH on short codes. 
 

 

Table 4. Effectiveness comparison between USH and state-of-the-art data-independent method 
Method Precision Recall F1 score % False positive 

USH 16-bit 97.90 88.60 93.02 9.50 

Shazam 16-bit 93.42 71.00 80.68 25.00 

Shazam 20-bit 97.86 86.80 92.00 9.50 

 

 

4.2.2. Storage cost 
As a result of our proposed USH method, the 20-bit fingerprint features can be mapped into the 16-bit 

binary code. Hence, it significantly reduces the database size by 16-fold, resulting in higher search performance. 

 

4.3.  Discussion 
The performance of the proposed USH for large audio database retrieval is evaluated through  

the experiments and compared with state-of-the-art data-independent hashing method, the Shazam algorithm, 

on a test set of 3,000 audio recordings. The experimental results support the effectiveness of the USH with 

high precision and recall values at 97.90% and 88.60% respectively. For the satisfactory results, the hash 

codes produced from our proposed method have similarity preserving property, i.e., the similarity items are 

mapped to the same hash code, the dissimilarity items are mapped to another one. The data-independent 

methods do not take into account for this property. 

The Shazam algorithm has higher percentage of false positives (25.00%) than the USH (9.50%) for 

the same 16-bit hash code. It shows that the Shazam algorithm is more likely to give incorrect identifications 

for the short-length codes and that is of inferior performance in audio retrieval. Furthermore, if the database 

size is increased tremendously in the future, it is most likely that the Shazam algorithm would result  

a significant number of false positive matches. 
Let’s consider the collection S of the USH and the Shazam algorithm which effect to the accuracy of 

audio retrieval. For the Shazam algorithm, the collection S consists of the data items where the search 

algorithm tries to find only the matching items for those search queries regardless of similarity preserving, 

and this may result in losing a number of relevant data. For the collection S of our proposed USH method 

consists of candidate data items where the search algorithm focuses on the similarity between the search 

queries and the items in the database. As shown in Table 5, with the collection S of the USH, the Song ID 48 

is correctly identified by the two data items with the smallest distance (distance=1) at the same time offset. 

For the Shazam algorithm, the relevant song cannot be retrieved. 

 

 

Table 5. Example of the collection S of the proposed USH and the Shazam algorithm 
Method Song ID Time offset Distance Number of item(s) 

USH 16-bit 150 128 16 2 

 1041 239 28 2 

 936 -232 32 2 

 48* 152 1 2 

 306 228 48 2 

 2453 516 24 2 

 690 3720 32 1 

 690 2726 32 1 

Shazam 16-bit 2732 164 - 2 

 847 19 - 2 

 684 2871 - 1 

 674 4475 - 1 

 675 2584 - 1 

 676 1564 - 1 

 676 4739 - 1 

 677 1820 - 1 

Shazam 20-bit 1174 52 - 1 

 1176 557 - 1 

 1230 218 - 1 

 706 363 - 1 

 340 395 - 1 

 48 153 - 1 

 93 448 - 1 

 139 453 - 1 

* Refers to the system correctly identifies the audio recording 
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The major factors for our superiority are that 1) the similarity-preserving hash codes produced from 

our proposed USH method, and 2) the audio retrieval algorithm proposed composes of 2 metrics, one is  

the 𝐿2-norm, and the other is absolute offset time difference. These factors increase the ability to identify  

the candidate items according to the similarity level of audio sample and the songs in the reference database. 

And this significantly improves the retrieval performance. 

 

 

5. CONCLUSION 
In this paper, an unsupervised similarity-preserving hashing (USH) method for content-based audio 

retrieval is proposed. We develop a deep network with multiple hierarchical layers of nonlinear and linear 

transformations to learn compact hash codes where the similarity between samples is preserved. The independence 

and balance properties are included and optimized in the objective function to improve the codes.  

The experimental results on the Extended Ballroom dataset show the superiority of our proposed method 

over state-of-the-art data-independent method. It is suggested future work should be focused on extending 

USH to supervised hashing by leveraging the semantic labels to enhance the retrieval performance. 
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