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 In this paper, a set of non-parametric identification techniques are used  

in order to obtain second order models plus dead time for an  

underdamped system. Initially, non-parametric techniques were used to 

identify the system from the temperature data of a coal-heated oven. In this 

case, the identification techniques proposed by Stark, Jahanmiri-Fallahi and 

Ogata were used, which require obtaining two or three points of the step 

response for the system under study. In addition, the Matlab PID Tuner app 

was used to identify the underdamped system and compare the results with 

the other methods. The results show that the PID Tuner and the method 

proposed by Ogata are the ones that best represent the dynamics of  

the underdamped system, taking into account the values for the integral 

absolute error (IAE) and the correlation coefficient. With the Stark method 

an IAE of 181.56 was obtained, while with the PID Tuner the best 

performance was achieved with an IAE of 21.59. In terms of the results 

obtained with the cross correlation, the best performance was achieved with 

the PID tuner and the Stark method. 
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1. INTRODUCTION 

One of the main blocks of a control system is represented by the controller, which is a device 

responsible for calculating the error deviation between a measured value and a reference value or set point.  

For the tuning of these controllers, an analytical process is carried out that allows obtaining the design 

parameters taking into account the variable to be controlled and the dynamics of the plant under study [1]. 

Before designing the controller, it is necessary to identify the system dynamics. This process requires using 

an excitation and storing the input and output data, in order to obtain a model that can correctly describe  

the system behavior [2]. In this context, identification techniques arise, which use statistical methods to 

design mathematical models from experimental data of a process [3, 4]. 

Depending on the model obtained, the identification techniques can be classified into parametric and 

non-parametric. In parametric techniques the model elements are calculated in order to minimize the error 

between the process under study and the model [5-7]. They are classified in time domain techniques and frequency 

domain techniques, which can be used to estimate parameters of continuous and discrete models [8]. 

Non-parametric techniques are characterized by representing the dynamics of the system with a non-

finite number of parameters [9-12]. They are classified into frequency techniques, correlation analysis and 

transient response analysis. In this work, non-parametric techniques based on the analysis of the transient 

response are used, which aim to obtain the system model in response to a step or impulse [13]. From a set of 
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experimental data on the temperature of a coal-heated oven, the identification of a second-order system plus 

dead time was performed, using the structure of a transfer function for an underdamped system. To obtain  

the models, it was necessary to identify the gain, dead time, damping factor and the natural frequency of  

the system. 

Specifically, the methods of Stark and Jahanmiri-Fallahi were used, which are ideal for  

the identification of second-order systems plus dead time and need three points on the output response [14].  

In addition, the method proposed by Ogata was used to identify a second-order underdamped system plus 

dead time, based on the step response [15]. In parallel with the methods studied, the Matlab PID Tuner was 

used to identify the systems under study from a set of experimental data [16]. 

In the literature, there are investigations in which identification techniques have been used in 

overdamped and underdamped systems. In the work done in [17], a PID tuning methodology was proposed to 

obtain the mathematical model of high-order plants with oscillating dynamics. The researchers in [18] used 

different non-parametric identification methods applied in a linear pressure process. The results were 

evaluated in terms of performance indices such as modeling time and the IAE. 

The authors in [19] used non-parametric techniques for modeling power curves of a wind turbine.  

The results obtained were contrasted with data from a wind farm in Canada. In the same field of application, 

the authors in [20] used non-parametric methods for interharmonic estimation in photovoltaic systems. 

Finally, in the work developed in [21] the modeling of linear systems with non-parametric methods was 

performed, for which periodic excitation signals were used. 

In addition to the above, research has recently been carried out using soft computing techniques to 

perform non-parametric identification of dynamic systems. The authors in [22] made the identification of  

a liquid slosh plant using the Hammerstein model based on the Grey Wolf Optimizer method. The results 

obtained demonstrated that the proposed generic model has good potential to identify this type of process.  

In [23] the authors proposed an improved version of the Sine Cosine Algorithm, in order to acquire 

and optimize a dynamic model for a twin rotor system, with which good performance and excellent precision 

in the process of identification was obtained. Furthermore, the researchers in [24] proposed a novel method  

for the identification of bilinear systems with Gaussian noises. Finally, in [25] the authors presented  

a comprehensive review of the computational techniques used in the literature to identify nonlinear systems. 

Taking into account the literature review, this work proposes as a novelty the integration of methods 

that use two and three points of the step response curve to implement the identification process. The results 

obtained in terms of performance indices are highlighted. This paper is organized as follows: in section 2  

the materials and methods are presented, in which the identification methods applied in one second order 

system plus dead time are detailed. In section 3, the results and the analysis of the models are presented, 

using reference parameters such as the IAE, correlation coefficient and cross correlation. Finally, conclusions 

and references are presented. 

 

 

2. RESEARCH METHOD 

2.1.  Underdamped system 

For this case, 309 samples of a variable of temperature from a coal-heated oven were used.  

Data were acquired in a prototype oven owned by the Magma Ingeniería research group at the Universidad 

del Magdalena, for which an Arduino Uno board and a PT-100 temperature sensor were used.  

The temperature values were stored in the Arduino board memory with a sampling time of 0.1s and  

a resolution of 10 bits. These data are available in a file with a mat extension that was imported to Matlab 

using the load command. The temperature data was plotted to analyze the behavior in the time domain. 

Figure 1 shows that the data needs to be filtered in order to obtain the mathematical model of the process. 

 After a data analysis, repeated values in some time intervals were detected. In addition, it can be 

seen that the temperature is taking negative values. Due to the nature of the process, these values are not 

admissible and must be removed from the data vector. To eliminate the negative data, they were first 

replaced by 0 and then a linear interpolation was performed. The results are shown in Figure 2, in which it 

can be seen that there are no negative temperature data, but it is still necessary to apply a filtering stage 

before proceeding with the application of the identification methods. 

For the filtering, a zero-phase filter [26] was implemented, which consists of making the average at 

each point with the surrounding points. If this average is made exactly over a period of the frequency to be 

eliminated, an average is being made over the period and therefore the contribution of this frequency with all 

its harmonics is eliminated. The appropriate Matlab function to apply this filter is the filtfilt function.  

With this function the filtering in the frequency space is carried out from the coefficients a and b of  

the transfer function H(w), as can be seen in (1) 
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Figure 1. Experimental data of the underdamped system 

 

 

 
 

Figure 2. Experimental data without negative samples 

 

 

𝐻(𝑤) =
𝑏1𝑧0 + 𝑏2𝑧−1 + 𝑏3𝑧−3 + ⋯

𝑎1𝑧0 + 𝑎2𝑧−1 + 𝑎3𝑧−3 + ⋯
 (1) 

 

In the case of zero-phase filters, the numerator coefficients (b1, b2 ...) are all equal and equivalent to 

the inverse of the number of points on which the average is made, while the denominator is equal to 1 (a=1). 

A good representation of the temperature data was obtained with the zero-phase filter, averaging 

with 10 points and eliminating the offset. The results can be as shown in Figure 3, which correspond to  

a second-order underdamped system plus dead time. 

 

 

 
 

Figure 3. Temperature data filtered without offset 
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2.1.1. Identification with the stark method 

The first method used to identify the underdamped system of Figure 3 is that proposed by  

Stark [14]. In this method it is necessary to find the values in which the response of the system is 15%, 45% 

and 75% of the steady state value. To find the steady state value, the values where the signal tends to stabilize 

were averaged, approximately between t=10 s and t=30 s, resulting in 68.3810 °C. Taking this value as  

a reference, the times found are: 

 

𝑡15% = 𝑡68.3810×0.15 = 𝑡10.2571 = 1.75 𝑠 (2) 

 

𝑡45% = 𝑡68.3810×0.45 = 𝑡30.7714 = 2.25 𝑠 (3) 

 

𝑡75% = 𝑡68.3810×0.75 = 𝑡51.2857 = 2.65 𝑠 (4) 

 

Once the three times were obtained, the parameter x was calculated from (5). 

 

𝑥 =
𝑡45% − 𝑡15%

𝑡75% − 𝑡15%

=
2.25 − 1.75

2.65 − 1.75
= 0.5556 (5) 

 

Subsequently, the damping factor calculation was performed using (6). 

 

𝜁 =
0.0805 − 5.547(0.475 − 𝑥)2

𝑥 − 0.356
= 0.2228 (6) 

 

Next, the calculation of function f2 was performed, taking into account the value of the damping factor. 

 

𝑓2(𝜁) = {
2.6𝜁 − 0.6              𝜁 ≥ 1

0.708(2.811)𝜁       𝜁 < 1
  

 

𝑓2(𝜁) = 0.708(2.811)𝜁 = 0.8913 (7) 

 

Then, the natural frequency was found with (8). 
 

𝜔𝑛 =
1

𝜏
=

𝑓2(𝜁)

𝑡75% − 𝑡15%

= 0.9903 (8) 

 

With the value of the natural frequency, the function f3 was calculated and then the dead time t0. 

 

𝑓3(𝜁) = 0.922(1.66)𝜁 = 1.0322 (9) 

 

𝑡0 = 𝑡45% −
𝑓3(𝜁)

𝜔𝑛

= 1.2077 s (10) 

 

Finally, the calculation of the gain kp was performed. 
 

𝑘𝑃 =
∆𝑦

∆𝑢
=

68.3810

1
= 68.3810 (11) 

 

With the calculated values of the natural frequency, the damping factor, the gain of the process and the dead 

time, the mathematical model of the process denoted as GS1(s) was obtained. 
 

𝐺𝑆1(𝑠) =
𝜔𝑛

2𝑘𝑝

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

𝑒−𝑡0𝑠

=
67.06

𝑠2 + 0.4413𝑠 + 0.9807
𝑒−1.21𝑠 

(12) 

 

2.1.2. Identification with the Jahanmiri-Fallahi method 

Like the Stark method, this method is based on obtaining three reference points from the step 

response of the model to be identified [27, 28]. The two options offered by this method were implemented. 

Initially the values t2, t70 and t90 were used, which the times necessary for the output response are staying 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 :  6340 - 6348 

6344 

within 2, 70 and 90% of the final value. The values of t5, t70 and t90 were also used, where the only difference 

is the use of time t5 in which the response staying within 5% of the final value. 

For case 1, the values of t2, t70 and t90 were identified from Figure 3. 

 

𝑡2% = 1.11 𝑠, 𝑡70% = 2.6 𝑠, 𝑡90% = 2.87 𝑠 (13) 

 

Subsequently, the dead time was defined; 

 

𝑡𝑚 = 𝑡2% = 1.11 𝑠 (14) 

 

The calculation of the reference constant was performed as shown in (15). 

 

𝜂 =
𝑡90 − 𝑡70

𝑡90 − 𝑡𝑚

=
2.87 − 2.6

2.87 − 1.11
= 0.1534 (15) 

 

Taking into account the value of the reference constant, the damping coefficient was calculated. 

 

𝑓𝑜𝑟 𝜂 ≤ 0.4771 → 𝜁 = √
0.4844651 − 0.75323499𝜂

1 − 2.0946444𝜂
;   

𝑓𝑜𝑟 𝜂 ≥ 0.4771 → 𝜁 = 13.9352 

(16) 

 

𝑓𝑜𝑟 𝜂 ≤ 0.4771 → 𝜁 = 0.7373 (17) 

 

With the value of the damping coefficient, the calculation of the time constant was performed 
 

𝜏 =
𝑡90 − 𝑡𝑚

0.424301 + 4.62533𝜁 − 2.65412𝑒−𝜁
= 0.6862 𝑠 (18) 

 

The gain kp is the same as calculated in the Stark method. With all the above values, the transfer 

function GJF1(s) was obtained. 

 

𝐺𝐽𝐹1(𝑠) =
𝑘𝑝𝑒−𝑡𝑚𝑠

𝜏2𝑠2 + 2𝜁𝜏𝑠 + 1
=

68.38𝑒−1.11𝑠

0.4709𝑠2 + 1.012𝑠 + 1
 (19) 

 

For case 2, the values of t5, t70 and t90 were used from Figure 3. For tm=t5=1.41 s, the calculation of 

the reference constant, damping coefficient and time constant was performed. This way, the parameters 

shown in (20) were obtained. 

 

𝜂 = 0.1849, 𝜁 = 0.7506, 𝜏 = 0.6659 (20) 

 

Then, the transfer function GJF2(s) was obtained. 

 

𝐺𝐽𝐹2(𝑠) =
𝑘𝑝𝑒−𝑡𝑚𝑠

𝜏2𝑠2 + 2𝜁𝜏𝑠 + 1
=

68.38𝑒−1.41𝑠

0.4434𝑠2 + 0.9996𝑠 + 1
 (21) 

 

2.1.3. Identification with the Ogata method 

In this method all design parameters are extracted taking into account the analysis of the transient 

response of a second order system plus dead time [15]. Initially, the calculation of the maximum overshoot of 

Figure 3 was performed. 
 

𝑀𝑝 =
𝑦(𝑡𝑝) − 𝑦(𝑠𝑠)

𝑦(𝑠𝑠)
=

86.3 − 68.38

68.38
= 0.2621 (22) 

 

y(tp) equals the value of the output at peak time tp. In the case of the system under study, the peak time is 

tp=4s and the output value at that time is y(tp)=86.3. 

y(ss) is the stable state value, which is 68.38. With the value of Mp, the damping factor can be obtained  

with (23). 
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𝜁 =
√

1

1 + (
𝜋

𝑙𝑛(𝑀𝑝)
)

2 = 0.3921 
(23) 

 

With the peak time tp=4 s, the natural frequency wn is found with (24). 

 

𝑤𝑑 =
𝜋

𝑡𝑝

= 0.7854, 𝑤𝑛 =
𝑤𝑑

√1 − 𝜁2
= 0.8538 (24) 

 

The process gain (kp) is the value of 68.38. In addition, it was determined from Figure 3 that  

the dead time is t0=1.1 s. With the parameters calculated above, the process transfer function GT1(s)  

is obtained. 
 

𝐺𝑇1 =
𝜔𝑛

2𝑘𝑃

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

𝑒−𝑡0𝑠 =
49.85

𝑠2 + 0.6695𝑠 + 0.729
𝑒−1.1𝑠 (25) 

 

2.1.4. Identification with the Matlab PID Tuner app 

Using the Matlab PID Tuner app [16], the system identification was performed from the original 

(unfiltered) data that is described in Figure 1. For this, the plant Identification tool was used and a second 

order underdamped model with delay was selected (Underdamped Pair). It is noteworthy that the PID tuner 

uses a proprietary tuning algorithm developed by MathWorks. In addition, the Auto Estimate tool was used  

to improve the results obtained in the model. The results are shown in Figure 4. Equation (26) shows  

the GTuner transfer function with the parameters K=69.957, Tw=0.68764, ζ=0.357 and τ=1.5127 obtained with 

the PID Tuner. 

 

𝐺𝑇𝑢𝑛𝑒𝑟 =
𝐾

𝑇𝑤
2𝑠2 + 2𝜁𝑇𝑤𝑠 + 1

𝑒−𝜏𝑠 =
69.957

0.4728𝑠2 + 0.491𝑠 + 1
𝑒−1.5127𝑠 (26) 

 

 

 
 

Figure 4. Identification with the Matlab PID Tuner 
 

 

2.2.  Model validation 

In order to determine the accuracy in the identification process, the IAE was calculated for all  

methods [29]. See (27), 
 

𝐼𝐴𝐸 = ∫ |𝑦𝑝(𝑡) − 𝑦𝑚(𝑡)|𝑑𝑡
𝛼

0

 (27) 

 

where yp(t) is the plant output, which corresponds to the temperature in degree Celsius of the experimental 

data. ym(t) is the identified model for the temperature in degree Celsius.  

This index represents the area between the plant response and the identified model response.  

If the IAE→0 then ym(t)→yp(t). Thus, as this performance index decreases, the accuracy of the model will be 

better. In Matlab the trapz command was used, which allows the calculation of the approximate integral of  

a data vector, using the trapezoidal method. 
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Additionally, in order to measure the similarity between the signals, the calculation of the Pearson 

correlation coefficient (r) and the cross correlation (R) was performed [30]. For this purpose, the Matlab 

xcorr and corrcoef commands were used. 

The results obtained with the correlation coefficient were interpreted according to the following cases: 

 If 0<r<1, indicates that there is a positive correlation. 

 If r=1, it is a perfect positive correlation, which means that if one variable increases the other increases in  

the same proportion. 

 If -1<r<0, indicates that there is a negative correlation, which means an inverse relationship between  

the variables. 

 

 

3. RESULTS AND DISCUSSION 

Figure 5 shows the step response for each of the transfer functions obtained with the 5 identification 

methods implemented in this work. It can be seen that the signals obtained with the PID Tuner app and with 

the methods of Stark and Ogata are the ones that best represent the dynamics of the original signal. In order 

to perform a statistical analysis of the results, the calculations of the IAE and the correlation coefficient were 

performed, which are shown in Table 1. It can be seen that the best IAE was obtained with the PID Tuner and 

the Ogata method with values of 21.59 and 62.07 respectively. However, the values calculated in the 5 

methods reflect that the transfer functions show differences with respect to the temperature data of 

the original process. On the other hand, correlation coefficients indicating a positive correlation were 

obtained with all the methods. The best result, according to this coefficient, was obtained with the PID Tuner 

app with a value of 0.9787 as shown in Table 1. Finally, Figure 6 shows the cross correlation for each of  

the methods in relation to the original signal. In this case, the best results were obtained with the PID Tuner 

and the Stark method. 

 

 

 
 

Figure 5. Step response for the underdamped system with the 5 methods 

 

 

Table 1. IAE and correlation coefficient for the underdamped system 
Method Transfer Function IAE r 

Stark 𝐺𝑆1 =
67.06

𝑠2 + 0.4413𝑠 + 0.9807
𝑒−1.21𝑠 181.56 0.9367 

Jahanmiri-Fallahi (t2%) 𝐺𝐽𝐹1(𝑠) =
68.38𝑒−1.11𝑠

0.4709𝑠2 + 1.012𝑠 + 1
 133.28 0.9761 

Jahanmiri-Fallahi (t5%) 𝐺𝐽𝐹2(𝑠) =
68.38𝑒−1.41𝑠

0.4434𝑠2 + 0.9996𝑠 + 1
 329.94 0.9747 

Ogata 𝐺𝑇1 =
49.85

𝑠2 + 0.6695𝑠 + 0.729
𝑒−1.1𝑠 62.07 0.9505 

Matlab PID Tuner 𝐺𝑇𝑢𝑛𝑒𝑟 =
69.96

0.4728𝑠2 + 0.491𝑠 + 1
𝑒−1.51𝑠 21.59 0.9787 
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Figure 6. Results obtained with cross correlation with the methods under study 

 

 

4. CONCLUSION 

It can be concluded that non-parametric techniques can be applied for the identification of second 

order underdamped systems plus dead time. It was established that the PID Tuner tool and the method 

proposed by Ogata are the ones that best represent the transient response of the plant under study. Also,  

it was possible to demonstrate the need to evaluate other identification techniques reported in the literature 

such as neural networks, in order to improve the results obtained in relation to the integral absolute error.  

On the other hand, the calculation of Pearson's correlation coefficient made it possible to verify that there is  

a positive correlation between the methods applied and the experimental data. 
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