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 Brain tumour segmentation can improve diagnostics efficiency, rise  

the prediction rate and treatment planning. This will help the doctors  

and experts in their work. Where many types of brain tumour may be 

classified easily, the gliomas tumour is challenging to be segmented because 

of the diffusion between the tumour and the surrounding edema. Another 

important challenge with this type of brain tumour is that the tumour may 

grow anywhere in the brain with different shape and size. Brain cancer 

presents one of the most famous diseases over the world, which encourage 

the researchers to find a high-throughput system for tumour detection and 

classification. Several approaches have been proposed to design automatic 

detection and classification systems. This paper presents an integrated 

framework to segment the gliomas brain tumour automatically using pixel 

clustering for the MRI images foreground and background and classify its 

type based on deep learning mechanism, which is the convolutional neural 

network. In this work, a novel segmentation and classification system is 

proposed to detect the tumour cells and classify the brain image if it is 

healthy or not. After collecting data for healthy and non-healthy brain 

images, satisfactory results are found and registered using computer vision 

approaches. This approach can be used as a part of a bigger diagnosis system 

for breast tumour detection and manipulation. 
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1. INTRODUCTION 

Brain cancer present one of the highest death causes besides several cancer types with the highest 

death compared with the number of patients [1]. The brain tumour is a group of abnormal cells that grow  

in the brain [2]. Detect this mass and identify the location of it helps the doctors to treat the patients; in most 

cases, they need to remove the tumour surgically. Where the brain tumour has many types, gliomas present 

the most difficult one for prediction.  

In the gliomas type, the tumour area poorly contrasts and difficult to segment regarding its  

diffusing. Furthermore, the tumour spread in many size and shapes in the brain [3]. In spite of the last 

improvement in the brain cancer treatment that happened recently, but the morbidity still correlated with  

the poor diagnosis. According to the American Brain tumour Association states, there are 120 types of  

the brain tumour and it becomes the most death cause of the young people whose age under 40 years [4]. 

Despite all the improvements in the brain cancer treatment but the survival rate still low, which as reported in 

the cure brain cancer foundation and shown in Figure 1 [5]. 
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Early detection of brain cancer can help the patient to be survived and overcome cancer treatment 

problems. The low survival percent, the high cost of the treatment, the severity behind the surgery treatment, 

and a large number of brain types present demand for early detection with an effective diagnosis. The most 

popular imaging method for medical purposes is the magnetic resonance imaging (MRI) method [6] in which 

a strong magnetic field is used besides the radio waves and the field gradients. Depending on the clinical 

application, different types of contrast that are used in MR imaging like T1–and T2–weighted imaging [7]. 

An example of the MRI images is shown in Figure 2.  

 

 

 
 

Figure 1. Survival rate for the period between 1984-2013 [5] 

 
 

Figure 2. Brain image using  

MRI technique 

 

 

Classifying the brain cells if it is healthy or not, the tumour cells should be segmented first.  

The most popular segmentation method is a region growing method which depends on a seed point that is 

growing according to the Euclidian distance between pixels [8]. However, the segmentation process is 

considered as a challenge for researchers because of the image uniformity and the variation of the cells size 

and shape [9].  

Superpixel method is a simple type of clustering that is used for image partitioning process [10] and 

based on the most important part of any image which is the pixel value [11]. Using several parameters and 

depending on the distance between pixels, these partitions are segmented and labelled with variant sizes. 

These sub-images are used as input for classification models for classification purposes.  

Convolutional neural network (CNN) is considered as a robust classification model that is trained 

and learned on a huge number of data sets and designed using a combination of networks as layers. Using  

the CNN means the ability to extract features from the raw input data using its complicated hierarchy without 

need for the manual feature extraction [12]. This study aims to segment the gliomas brain tumour 

automatically using pixel clustering for the MRI images foreground and background and use the results to 

classify the cell status based on deep learning mechanism which is the CNN. 

 

 

2. RELATED WORK 

Segmentation the brain tumour process is still a challenge for the researchers and the most common 

method for brain tumour segmentation is the region growing method [13]. The segmentation process using 

region growing need for a manual selection for a seed in which the selected point may cause an intensity 

distance error in the homogeneity of the of pixels. Another method may be the thresholding [14] depending 

on two grey levels (0 and 255) this may cause losing some of the actual tumour cells. Based on image 

processing techniques and using ANNs, the cancer cells were detected and classified [15]. This work is 

inspired to merge a compatiple techniques to get the most useful information from the images based on  

the ROI using image processing techniques.  

Depending on the symmetrical points of the left and the right sides of the brain, some methods were 

proposed. Extract the features along the line between the two sides where low symmetry means there is 

different tissue which means tumour existing [16, 17]. But this way cannot be efficient with gliomas tumour 

type because this type appears in some cases in various locations with different shape and size.  

Using the convolutional networks in classification able to extract sophisticated features which 

makes them well-meaning. This is done by providing the output feature maps of a Convolutional layer as 

input channels to the subsequent Convolutional layer [18]. The building blocks in CNN allow forming 

different types of CNNs. This type of deep learning networks is very effective for high-performance 

computer vision model, and they efficiently learn and extract many visual features for well generalizing tasks 

without the need for hand-crafted feature extraction [19]. Most of the existed methods are based on clustering 

algorithms, machine learning, or using the whole image based on deep learning algorithms [20-23].  
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The performance of these methods depends on the quality and the type of the extracted features which can be 

varied [15, 24]. 

The main aim of this paper is to develop an integrated clustring and deep learning based approach  

to detect and extract the brain tumour and classify its type. Based on superpixel clustring algorithm for 

tumour segmentation is expected to work properly without needing for the manual detection of the tumour 

cells. Moreover, using the deep learning for classification purposes will be independent from the feature 

extraction process which is traditionally used in machine learning. Furthermore, the proposed approach 

showed promising results which prove the ability of the deep learning algorithm to produce a robust and 

accurate detection and classification system for the gliomas brain tumour. 

 

 

3. EXPERIMENT AND RESULTS  

The proposed study aims to segment the brain tumour using a superpixel clustering method then 

classify the labelled patches using CNN. This work was carried out over five months and will be improved 

subsequently for better results.  

 

3.1. Material and data set 

The proposed algorithm was carried out and tested using a data set from the cancer imaging archive 

(TCIA) [25, 26]. This data set is publicly available and can be used for research and academic purposes. 

The neuroradiologists in Thomas Jefferson University (TJU) Hospital provide the image by its feature 

characterisations. The total number of images in this data set is 4069; the healthy brain is presented by 988 

images where the non-healthy brain is presented by 3081 images.  

 

3.2. Experiment 

The proposed system consists of multiple stages as shown in Figure 3. 
 

 

 
 

Figure 3. General methodology 
 

 

3.3. Pre-processing 

This step aims to prepare the images and adjust their contrast using filtering and normalise  

the images using statistical operations bbased on the following equation [27]. This step was applied to all 

images before the superpixel segmentation process. 
 

𝐶 =  
𝐿𝑚𝑎𝑥−𝐿𝑚𝑖𝑛

𝐿𝑚𝑎𝑥+𝐿𝑚𝑖𝑛
 (1) 

 

where C is the contrast, 𝐿𝑚𝑎𝑥 and 𝐿𝑚𝑖𝑛 are the maximum and minimum luminance values. 
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3.4. Superpixel segmentation 

After preparing the MRI images and remove any noise may appear and cause segmentation or 

classification error, a superpixel segmentation process was applied to segment the brain tumour area. There 

are different algorithms can be used for superpixel segmentation [28]. The proposed method used simple 

linear iterative clustering (SLIC) algorithm [10], which adaptively refines the compactness parameter after 

the first iteration. The first step of this algorithm is initialising centers for clusters on a grid spaced S pixel. 

Next, the cluster centers are altered into 3 × 3 neighborhood based on the lowest gradient position. Each pixel 

is assigned to the nearest pixel based on the measured distance as shown in (2) which is measured using (3) 

and (4) which find the color nearness and the spatial nearness respectively.  

 

D = √(
dc

m
)

2

+ (
ds

S
)

2

 (2) 

 

dc = √∑ (I(xi, yi, sp) − I(xj, yj, sp))2
sp∈B  (3) 

 

ds =  √(xj − xi)
2 + (yj − yi)

2 (4) 

 

𝑆𝑝 is the spectral band that has the pixels 𝐼(𝑥𝑖 , 𝑦𝑖 , 𝑠𝑝) and 𝐼(𝑥𝑗 , 𝑦𝑗 , 𝑠𝑝), m parameter is used to control  

the superpixels compactness, B presents the spectral band set. Finally, S presents the sampling interval of 

each cluster centroid [29]. 

Split the image into labels after several attempts to find the most suitable value of the number of 

superpixels we want to create, which is 15 areas. After computing, the number of superpixels, which is 16, 

the colour of each pixel was set using the mean value of the superpixel region. This grouping process is done 

depending on the spatial distance and also the intensity distance between the pixels. Figure 4 shows these 

superpixels where Figure 5 shows the labelled regions after setting the pixel values. 

Applying these steps and binarize the resultant image, the required segmented image for  

the non-healthy cells is produced. It is shown in Figure 6. The segmented images will be used in CNN for 

training purposes to predict the status of the brain cells.  

 

 

 
 

Figure 4. Pixel values 

setting 

 
 

Figure 5. Image 

superpixels 

 
 

Figure 6. Segmented image 

 

 

3.5. Convolutional neural networks 

In this stage, the resulted patches or the sub-areas from the superpixel segmentation step are labelled 

then trained using the CNN to classify the brain cells normality. The traditional way for classification always 

carried out by extracting the features manually then use one of the machine learning classifiers such as neural 

networks and SVM. By using the deep learning network, which is CNN, significant features will be extracted 

using the raw images which are here the resulted patches from the superpixel step. The CNN structure 

comprises of many layers: the input layer, the convolutional layers, pooling layers, dropout layers, fully 

connected layers, and finally the output layer. These layers are explained below as shown in Figure 7. 

a. Convolutional layer: This is the first layer that deals with the raw image. This layer consists of  

many filters that are convolved to have weights for each region of the image that is presented as a feature 

map [30].  

b. Pooling layer: After having a huge number of features, these features are reduced using the pooling  

layer that will reduce the computational complexity of the network [32].  
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c. Fully connected layer: This the last layer where each neuron in this layer is connected with all neurons  

in the previous layer. 

 

 

 
 

Figure 7. Convolutional network structure 

 

 

The architecture of the proposed CNN is shown in Table 1. In every single layer of the CNN 

produces a response for the input image. In the CNN, there are a few suitable layers for image feature 

extraction process. The first layers of its structure capture only the global features of the image, such as  

the edges and the blobs, see Figure 8, which shows a set of weights from the first layer. 

In every single layer of the CNN produces a response for the input image. In the CNN, there are  

a few suitable layers for image feature extraction process. The first layers of its structure capture only  

the global features of the image, such as the edges and the blobs, see Figure 8, which shows a set of weights 

from the first layer. These features will be processed using deeper networks for more detailed features. After 

having a trained model, the evaluation process is done using the test labels with the predicted labels to find 

the classifier performance and accuracy. After train the segmented patches from the superpixel process,  

the evaluation process should be applied by repeating the same steps on unknown image to classify it and 

find the accuracy of the proposed system. 

 

 

Table 1. Convolutional network parameters 
Layer Parameter 

Image Input ‘data’ 256x256 (normalized) 

Convolution ‘conv1’ 96 11x11x3 convolutions 

Max Pooling ‘pool1’ 3x3 max pooling 

Convolution ‘conv2’ 256 5x5x48 convolutions 

Max Pooling ‘pool2’ 2x2 max pooling 

Fully Connected ‘fc6’ 4096 fully connected 

Dropout ‘drop7’ 50% 

Classification ‘output’ 2 

 

 

 
 

Figure 8. First convolutional layer weight 
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4. RESULTS AND DISCUSSION 

The proposed model has different training accuracy using a different number of epochs as shown  

in Figure 9. By using CNN, the need for a large number of epochs is reduced where the training  

accuracy becomes stable, starting from 125 epoch. The system performance was evaluated, and the resulted 

accuracy was reported for further enhancement in the future. The overall testing accuracy was 75%, and  

the accuracy for each class is shown in the Figure 10. 

The proposed method tried to merge deep learning with the clustering for robustness purposes. 

These results could be improved by parameter tuning, optimisation, and apply on another type of models 

such as the decision tree classifier by classifying each patch individually then take the most redundant 

category by voting from all the image partitions. This work could be extended for multiclass classification 

using SVM classifier. The classification process could cover more brain tumour types by extracting more 

features based on machine learning. 

 

 

 
 

Figure 9. Training accuracy 

 

 

 
 

Figure 10. Confusion matrix 

 

 

5. CONCLUSION  

The brain cancer rate rises recently, which lead the research to find a high-throughput detection 

system. In this study, an automatic segmentation, detection, and classification system were proposed to detect 

the abnormal cells and identify its type. The proposed approach aims to find a robust segmentation process 

besides using the deep learning algorithm, which is the CNN. The segmentation using superpixel shows an 

effective way to segment the brain tumour cells and by using the patches which specify the image features. 

Using the CNN after the segmentation step abridges the feature extraction step, which is a big challenge for 

the researchers in machine learning algorithms. This system can be extended to cover other types of brain 

cancer. This system can be applied using a different number of the superpixel patches. 
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