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 Content based image retrieval (CBIR) has become an important factor in 
medical imaging research and is obtaining a great success. More applications 

still need to be developed to get more powerful systems for better image 
similarity matching, and as a result getting better image retrieval systems. 
This research focuses on implementing low-level descriptors to maximize  
the quality of the retrieval of medical images. Such a research is supposed  
to set a better result in terms of image similarity matching. In this research  
a system that uses low-level descriptors is introduced. Three descriptors have 
been developed and applied in an attempt to increase the accuracy of image 
matching. The final results showed a qualified system in medical images 
retrieval specially that the low-level image descriptors have not been used yet 

in the image similarity matching in the medical field. 
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1. INTRODUCTION 

The traditional way to find images is by assigning keywords to each image, and then using some 

textual query the needed image(s) will be retrieved. This approach sometimes can be time consuming when 

large number of images is searched, or when the assigned keywords for the images are not relevant to  

the image content. Content based image retrieval (CBIR) means that images can be searched by their visual 

content, such as graph, text, color [1], and local and global features [2]. CBIR has many methods for 

analyzing images; each method represents different aspects of the visual information of the image. Image 

searching and image archival can greatly reduce the time consumed by using automatic image analysis tools [1]. 

CBIR consists of different phases. In the first phase, the images are analyzed and inserted  
to the image database. In the second phase, the images can be queried based on color, shape, and texture.  

In the third phase, the search queries are issued by giving an initial image, or by starting with random images 

from current images in a specific database. In the last phase the query continues so that images can be 

marked as positive or negative samples to refine the search and to get better results [1]. Another classification 

for CBIR phases as mentioned in [3] the phases are feature extraction, feature storage in which the calculated 

features are stored somewhere, feature comparison to define the similar images, and the query interface 

which is used to initiate the search process. 

CBIR has achieved a great success in medical images applications, since it has the advantage of 

having easy and efficient comparison ways between two images. These comparisons provide the specialists 

with the needed information in the fastest way it could, and then it helps to improve their decisions based on 

more information resources. Therefore, to perform these comparisons a huge amount of images already 

stored in specific database is required. There are still many limitations in storing, searching, and retrieving 
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images. Also there are limitations in processing large databases. Thus more researches on these limitations 

are still needed [4, 5]. 

Based on the above there is a need to do more researches on the field of image similarity matching. 

Medical sector is one of the major sectors that can be benefited from the progressive development in the field 

of image processing and analysis. The reason behind this is trying to get to a level that reduces the human 

intervention of analyzing the medical images. Human errors during the patient’s diagnostic procedures are 

not accepted at all. An accurate and efficient automated system can provide the physicians with at least  
a preliminary diagnostic-based decision. The provided decision can be investigated further by either  

the physician themselves or other well-implemented automatic system. This research addresses the image 

retrieval process based on the images’ content and provides a thoroughly discussion of this approach 

 

 

2. RESEARCH METHOD 

Explaining research chronological, including research design, research procedure (in the form of 

algorithms, Pseudocode or other), how to test and data acquisition [1, 3]. The description of the course of 

research should be supported references, so the explanation can be accepted scientifically [2, 4]. Although 

many approaches in finding images using CBIR have been developed, there is still a need to do more 

researches in CBIR for medical applications. The developed proposed approach works by extracting content 

descriptions for each image (feature extraction), after that the semantic metadata will be built by developing 
similarity matching algorithms. These algorithms are used to compute the matching ratio between images. 

By having all the needed input and output data, the retrieval accuracy rate for the system can be calculated. 

This method is much better than using text to retrieve any patient's information. Although textual methods are 

widely used due to its simplicity, it is not very efficient; as it requires a domain expert. Also, the textual 

interpretations of image content may vary from person to person, which leads to store a huge data about 

patients. In addition, the textual data do not have a standard base [3]. That’s why finding the similar cases in 

medical applications based on image content gives better information and knowledge for specialists, and has 

proven great benefit in teaching [3] by helping instructors and students to browse and access educational 

medical datasets and view the retrieved results [2]. 

In order to define the similarity between two images the access to image information must be 

performed at the perceptual level. Or in another words the low-level features such as color, texture, shape, 
etc. These features are also defined as low-level descriptors. Two or more features can be integrated together 

to define new descriptor [6]. The main advantage of using low-level descriptors is the computational 

efficiency which its attributes provide. This makes it widely preferred and used in the CBIR areas. Many 

advanced algorithms have been developed but sometimes it does not model the image semantic properly, 

that’s why there is a need to use as many features as possible, or good enough features to define the best 

similarity between images [7]. 

 

2.1.  Lucene image retrieval 

One CBIR approach as described in [8] is Lucene Image Retrieval (LIRe). This approach  

is an extensible CBIR open source Java library. It extracts image features that are stored in specified 

repository and stores them in Lucene index for later retrieval. There are many image features included in this 
system such as color histograms in RGB, Tamura texture features coarseness, contrast and directionality, 

color and edge directivity descriptor (CEDD), fuzzy color and texture histogram (FCTH), and many other 

descriptors. The system is highly dynamic as new features added to the literature can be implemented and 

then integrated to the whole system framework.  

The main low-level features are color, shape, and texture. There are many low-level global features, 

such as color, edge, texture, and average features. From them we can extract many descriptors such as:  

- Color layout descriptor (CLD) which is a low level feature that represents the spatial layout of the images 

in a compact form. It’s generated by applying discrete cosine transformation (DCT) on the image to form 

a 16-dimensional feature vector [6]. Using this feature, image features can localize the image in separate 

4x4 sub-images [8].  

- Edge histogram feature (EHD) is a low level feature which utilizes the spatial distribution of image edges; 

it’s represented by dividing the image into 4 x 4 sub-images and then generates histogram from  
the edges of each sub image [6]. After generating the histograms, they are categorized into one of five 

types. These types are vertical, horizontal, diagonal with 45 and 135 degrees, and non-directional edges. 

Sometimes the sub-image can be categorized as non-edge block [9]. There are future hopes and attempts 

to develop a joint representation of EHD and CLD [10]. 

- Color of edge directivity descriptor (CEDD) which is a low level feature that can be extracted from  

the image. It incorporates color and texture information in one histogram by segmenting the image first into 
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24 color regions, and 6 textures regions, then creating the final histogram that includes 6 x 42=144 regions. 

As a low level feature, this feature is suitable to be used in large image databases since it costs low 

computational power. However, the size in this feature is limited to 54 bytes per image only; this makes 

the comparison between plenty of images an easier task [11]  

- Fuzzy color and texture histogram (FCTH) is also a low level feature that can be extracted from  

the image. It incorporates both color and texture information in one histogram. This feature can be 

obtained by combining 3 fuzzy systems together. It is also suitable to be used for large image databases;  

it costs low computational power as well. The size of this feature is limited to 72 bytes per image which 

makes comparisons between thousand images an easy task. As in [12], this feature has proved an accurate 
retrieval feature even in hard cases when the images contain some noise or smoothing. 

- Color structure descriptor (CSD) is based on color histogram [13], it's considered as an accurate 

descriptor in providing localized color distribution of each color cm. This descriptor is specified by:  

- h(m), m=1, …, M where m ∈ {32, 64, 128, 264}.  

- h(m) represents the final value of the number of positions where the structured elements contain  

color cm [14]. 

There are many other low-level descriptors such as grey level co-occurrence matrix (GLCM),  

and color coherence vector (CCV) that can be developed and used [11]. Although all of these descriptors 

have been developed in LIRe, only one descriptor can be used in one retrieval phase. The end-user must 

select the descriptor he/she wants to choose, and then the retrieval of the images will be based on this 

descriptor. An integration of all of these features has not been used yet. We took this advantage and designed 
a system that uses more than one descriptor in the retrieval phase. Also LIRe have not been used in the medical 

retrieval systems, so we decided to choose this system for medical retrieval objective, and compare  

the performance results between LIRe and our developed system. 

 

2.2.  ImageCLEFmed, medical image retrieval task test collection 

In [15, 16] ImageCLEFmed a medical image set free of charges and copyrights of more than 

300,000 images along with image annotations has been created. Searchers and learners may use it in many 

medical retrieval fields to accomplish many tasks such as evaluating the efficiency of existing systems, or by 

testing and evaluating new developed tools. Having such a test collection made it possible to evaluate and 

access the performance of medical IR systems with a real collection test, so the comparisons and assessments 

for these systems would be realistic. In addition, these test collections as mentioned in [17] are used in image 
retrieval outside medical fields.  

As mentioned in [15, 16] creating such a test collection will help researchers to test how well new 

systems will operate in retrieving relevant documents. Common measures are used to evaluate the systems 

such as recall and precision. Most searchers focus on the precision values by calculating the final average 

of all calculated precision values for each test task for the system. This measure is called mean average 

precision (MAP) which is also known as the most frequent measure used in the TREC collection test 

mentioned in [18].  

The ImageCLEFmed test has been created after three years of gathering, organizing, and storing since 

2005 till 2007. The main ImageCLEFmed dataset includes many sub-collections that include set of images with 

its annotations, these collections came from four resources in the first two years, and in 2007 two additional 

resources were added. The structure of the ImageCLEFmed is shown in Figure 2 [15]. As shown in this figure 

ImageCLEFmed is presented as the main library which consists of multiple collections. These collections 
were gathered into one main repository, each collection consists of multiple images and annotations. 

Each annotation is an Extensible Markup Language (XML) file. The annotation has description of specific 

medical case, and may include one or more image, these images are related together, and with the description 

these images represent a specific medical case (e.g. Renal cell carcinoma). ImageCLEFmed has 6 main 

collections, as specified in Table 1 [15]. 

Along with creating the dataset, a number of 85 topics have been developed. These topics were 

generated from variant real-world medical search engine logs on the internet. Topics can refer to one or more 

of the following: imaging modality, anatomical location, view for some medical case, and disease finding. 

An image would be relevant to a specific topic if it meets all explicit mentioned terms. In other words, it is an 

(AND) relationship not an (OR). The synonyms when searching for some topics are considered. Synonyms in 

this system are not language-based that depends on only stemmers but rather medical-based synonyms. 
Recall and precision measurements are used in evaluating the system with an aggregated measure 

which is mean average precision (MAP). MAP is computed by taking the average precision for all topics [19]. 

The similarity matching in this case can be stated as fusion-based similarity matching [20]. Using  

the ImageCLEFmed collection as a dataset containing the images and textual annotations; the result of 

retrieval of the top 10-30 images for each retrieving task reached 50% of precision in some cases. Retrieving  
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10-30 images aims to retrieve a good enough set of images, although the relevant images in the dataset might be 

much more. The main objective for this research is not only enhancing the performance results, but also to 

having more researchers use this collection to evaluate the performance of new developed systems and 

develop more approaches in the future [21]. We have used the ImageCLEFmed as a test collection for our 

system, we contacted the authors of ImageCLEFmed dataset, and they gave us an access to it [6].  
 

 

Table 1. ImageCLEFmed collection description 
Collection Name Image type(s) Cases Images Annotations Languages 

Casimage Radiology and pathology 2,076 8,725 2,076 French, English 

MIR Nuclear medicine 407 1,177 407 English 

PEIR Pathology and radiology 32,319 32,319 32,319 English 

PathoPIC Pathology 7,805 7,805 15,610 German, English 

myPACS Radiology 3,577 15,140 3,577 English 

CORI Endoscopy 1,496 1,496 1,496 English 

 

 

2.3.  The proposed system 

The main objective of this research is to design and implement a CBIR system that is capable  
to search for medical images using medical images as an input. Thus, the system framework will be similar  

to any other CBIR system consisting of the same phases. Although, many approaches for CBIR systems have 

been proposed in different ways, they are eventually the same. Every developed system goes through  

the same phases. However, the way in describing them only differs from a system framework view-point  

to another. The system in this research uses Low-level Features and uses CBIR to retrieve medical images.  

We choose LFCBIRM to define the system.  

In the proposed system several algorithms were developed under the MATLAB platform.  

The proposed system consists of three main components. The first component is the one that is responsible 

for extracting the features. The features can be extracted from both the input image or the input query.  

The second component is the database that has the collection of images’ features in general. The third 

component is the one that compare between the extracted features and the feature dataset (i.e. stored in  
the database). Based on the comparison result, the input will be diagnosed within the correct category. 

 

2.4.  Components of LFCBIRM system 

The system, as shown in Figure 1, works as follows. The user who is assumed to be a medical 

specialist or a student (e.g. medical student) will enter an image query to the main system interface. In this 

system the query is a medical image (e.g. MRI image for head). Let us assume an X-ray image for the human 

chest. This image will be processed by calculating its low-level descriptors. After that, the results will be 

compared with previously calculated descriptors that are stored in the index database. 

The indexed database (features data-file) was built by calculating all low-level descriptors of each 

image from the medical database; the ImageCLEFmed test collection created in [22] is used as a test dataset 

in this research. As described earlier, this dataset contains more than 66,000 images. A set of 5000 image 
have been used as a collection test dataset for the developed system. This dataset was selected from different 

collections in the ImageCLEFmed dataset. It includes diverse images for all the human body parts which  

are categorized into four main medical image types, which includes Pathology, Nuclear, Radiology, and 

Endoscopy. Examples of images are X-Ray image which is an example of Radiological images, MRI images, 

Ultrasound images, and Mammogram images. 

Initially, the indexed database was created for all 5000 medical images by extracting the developed 

features for each image. When the user initializes the search the query image is inserted to the system and  

the index of the image is calculated (index=list of low-level descriptors values). After that, the index of  

the query image is compared to other images indices. The similarity list after that is calculated and is sorted 

in a descending order. A number of (30-40) top images are retrieved. These images are supposed to be  

the most similar images to the input query. We assumed earlier to retrieve a set of 40 images although the full 

set of relevant images might be much more in the dataset. Studies in [22] showed that the searcher mostly 
seeks for "few good cases" that satisfy his/her searching issue, and that the user by human nature usually will 

not look for more than 30-50 resulting image. 
 

2.5.  System phases 

The LFCBIRM system has three main phases. As shown in Figure 2. The first phase is the feature 

extraction for the full dataset and storing it in a defined repository. In the second phase features are compared 

against each other (input image features vs. stored image features). In the final phase, images are retrieved 

through the user interface to the end user. 
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Figure 1. The proposed system framewor 

 

Figure 2. The proposed system phases 

 

 
The system reads each image of the medical dataset, extracts the image features, and then stores 

them in a Matlab data-file. The data-file includes information about the image name, and the values  

of the remaining features. The extracted features are CSD, EHD, and CEDD descriptors. Table 2 shows an 

example on how the data is organized in the index (features) data-file, and the bit size of each descriptor. 

 

 

Table 2. The features data-file 
Image Name Feature1: (CSD) Feature 2: (EHD) Feature 3: (CEDD) 

(set of characters)  32 bits 150 histogram regions 166 histogram region 

Image3445.jpg double array double array double array 

 

 

2.6.  Low-level feature descriptors for the system 

For CSD descriptor, M is assumed to be 32, this means that 32 colors are chosen to count  

the number of positions that contains the color cm. using only 32 colors is suitable for medical images, since 

most of them are either radiological, or homogeneous especially in the pathology images. 64 and 128 colors 

have been selected, and tests of using each one have been done, the retrieval results have changed 
significantly. Using 32 colors gives the best results among others. Three low-level descriptors, CEDD, CSD, 

and EHD, are selected as the feature extraction methods. No other modifications on these descriptors have 

been done. The system after that has been evaluated against LIRe using the same standard medical data set to 

measure and compare their performances. 

 

2.7.  System implementation 

To build the system, a Matlab based application has been developed. Four low-level image 

descriptors have been implemented. Three of them were used and one was left because it's a time consuming 

descriptor compared to other descriptors. The achieved results using the three descriptors are good  

as the results prove. The implemented low-level descriptors are CLD, CEDD, DCD and EHD. The system was 

evaluated against LIRe using the same standard medical dataset to compare the accuracy rate between them. 

 

2.8.  Fusion-based similarity matching 

The similarity between an inserted query image (Iq) and target image (Ij) is described as: 

 

Sim (Iq, Ij)=∑ 𝑤𝐹
𝐹  SimF (Iq, Ij)  

 

where F is one if the extracted features for the image, F ∈ {EHD; CLD; CSD}, and F are the weights within 

the different image representations. These weights are assumed to be 1, but in this research EHD descriptor 

has been given twice importance than the other descriptors, so the factor 2 for EHD is used.  

The similarity between the extracted features for the inserted image is compared against all  

the features of data-file values. Then the similarity list will contain all the differences between the query 

image and all other images. This list is sorted, so the top results are retrieved as the most matching images. 

 

 

3. RESULTS AND ANALYSIS 

Some sample runs have been performed in order to explain the details of the implementation and  

the description of this system. The input query is a frontal chest X-ray image as shown in Figure 3,  

and the resulting outputs using 40 retrieved images in Figure 4. 
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Figure 3. Input query image is X-ray for chest 
 

 

 
 

Figure 4. Retrieval of 40 images for the input query in Figure 3 
 

 

3.1.  Results and discussion 

Measuring the performance of this system and any other developed system must be carried out  

to judge them. To define the performance measurement of a new developed system it must be compared  

to other similar existing systems within the field. The developed LFCBIRM system is compared to LIRe.  

An indexing file for the same test collection dataset was created for both systems. Then, a number of 50 test 

cases for the two systems were applied. The measurements, such as recall, precision, F-measure function, and 

fallout were calculated to define the performance enhancement. Measurements such as recall and precision 

are widely used in measuring Information Retrieval (IR) systems [23, 24].  
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Precision is used to measure the accuracy of the search process [25], it can be defined as the ratio 

between the number of relevant retrieved images to the total number of retrieved images. The equation  

of precision is showed below.  

 

Precision=
number of relevant items retrieved

total number of items retrieved
 

 

Precision directly evaluates the correlation of the query image to the test collection, and indirectly 

evaluates the completeness of the feature extraction algorithm [25]. The value of precision is between [0.1-1]. 

Precision value equals 1 (or 100%) when every image retrieved to the user is relevant [26].  

Recall is used to measure the ability of the developed system to retrieve all the related items in  

the test collection [25]. Recall can be viewed as the probability that a retrieved image is relevant [25]. It can 

also be defined as the ratio between the number of relevant retrieved images to the total number  

of the relevant images in the collection dataset. The equation of precision is showed below. 

 

Recall=
number of relevant items retrieved 

number of relevant items in collectio 
 

 

Recall has also a value that is between, [0.1-1.0]. Recall value is 1.0 (or 100%) when every relevant 

image in the test collection is retrieved in the test case [26, 27]. F-measure is defined as a harmonic mean  

of recall (R) and precision (P) [28]. This measure has been introduced 20 years ago [16]. This measure was 

firstly introduced by C. J. van Rijsbergen in [29]. The F-measure combines recall and precision with an equal 

weight equation that is called F1 measure [29] F-measure equation is below:  

 

𝐹 =  
2𝑃𝑅

𝑃 + 𝑅
 

 

Fallout measure is viewed as the inverse of recall [25]. It is defined as the ratio of the irrelevant 

retrieved images to the total irrelevant images in the test collection. This measure is defined in  

the following equation. 

 

Fallout=
number of irrelevant items retrieved 

number of irrelevant items in collection
 

 

Experimental results 
A sample of 50 images from different collections was selected. 50% of this collection was images 

not from the data set. Those images were downloaded from the internet, and the rest images were from  

the ImgCLEFmed collections. A comparison between the LFCBIRM system and LIRe was made. Using  

the same dataset which is a test collection of 5000 images that are selected from ImgCLEFmed, and retrieving 

40 images every time for both systems.  

The time to build the index with a laptop of processor i3 CPU and 3 GB RAM was 11 hours and  

26 minutes, where it took about 4 hours to build the index with LIRe. However, the time to find the retrieved 

images was almost the same for both systems, which usually took about 3 seconds to 40 seconds in some 

cases. The time to get the results depends on the size of the images, the details in the images, and the colors 

of the images. Our observations showed that the colored images take longer time for the features  

to be extracted than the radiology (grey-level) images, this can be justified as the CSD descriptor for  

the colored images has more computations than the grey-level images.  
The system has achieved more than 70% accuracy level using precision measure over all test cases. 

The next figures specify the results of the system performance. The measurement results of the developed 

LFCBIRM system are shown in Figure 5. The precision value is 71%, the recall value is 27%, and  

the F-function value is 39%. The reason why the recall value is small although the precision value is high 

will be specified in the next section. 

The next Figure 6 compares the precision, recall, and the f-function results between systems.  

The LFCBIRM is the developed system in this research. Two LIRe tests have been made. The first system is 

LIRe using the EHD descriptor as the main descriptor and refines the results based on CEDD descriptor,  

it is specified as (LIRe 1) in the next figures. The second system is LIRe using CLD as the main descriptor 

and refining the results based on FCTH descriptor, it is specified as (LIRe 2) in the next figures. LIRe 

actually lacks for a combination between descriptors, each descriptor is a standalone, where in LFCBIM  
a combination of the three developed descriptors is made. 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 4, August 2020 :  4363 - 4371 

4370 

  

Figure 5. LFCBIRM performance results 
 

Figure 6. Measurement comparisons  

between systems 

 

 

4. MAIN CONTRIBUTIONS 

The proposed system provides the users with an accurate automated system to categories the input 

images. The resulted outputs are very similar based on the archived accuracy above. The proposed system is 

compared with the Lucene Image Retrieval system (i.e. LIRe). The comparison shows that the LFCBIRM 

system archives better result than the LIRe system. Moreover, the existing system has complicated APIs 

where the proposed one has a very simple and easy to use APIs. The future plan is to enhance the capabilities 

of the LFCBIRM system to a level that makes it a distinguished one in terms of the accuracy and its 

suitability for different kinds of users.  

 

 

5. CONCLUSION AND FUTURE DIRECTION 

In this content, building a medical CBIR system is introduced and implemented. This system can be 

built upon existing framework by making it specific to the medical applications by integrating and 

implementing four low-level descriptors to define similarity between images then to retrieve the most ranked 

images. The used descriptors provided good matching results between the images with more than 70% 

average precision. Thus, we can conclude that this system has gained good results in medical area as proved, 

and it promises for more future hopes for more systems and more ideas to be developed.  

There are so many future directions which can be applied in the near future; especially that CBIR 

for medical research is still a hot new research area. The following is a brief list of directions in which 
researchers can peruse (pursue): Making clusters for the similar images. Simply a defined number of clusters 

can be defined using famous algorithms such as K-nearest neighbor algorithm (KNN).  

Text-based with content-based images retrieval system can be developed. Each image is supported 

with an annotation file, using the description in these files to retrieve the related images within the same case. 

Synonyms must be considered as well. Building a system that considers the flipped or rotated images as 

relevant ones. Generating feedbacks from the users about the relevant images and the best image retrieving. 

The system can be expanded by developing more descriptors. 
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