ϵ_φ-contraction and some fixed point results via modified ω-distance mappings in the frame of complete quasi metric spaces and applications

K. Abodayeh1, T. Qawasmeh2, W. Shatanawi1,3, A. Tallafha4

1Department of Mathematics and general sciences, Prince Sultan University Riyadh, Saudi Arabia
2Department of Mathematics, Faculty of Science and Information Technology, Jadara University, Irbid, Jordan
3Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
4Department of mathematics, School of Science, University of Jordan, Amman, Jordan

Article Info

Article history:
Received Jun 14, 2019
Revised Jan 12, 2020
Accepted Feb 2, 2020

Keywords:
ϵ_ω-contraction
Common fixed point
Modified ω-distance
Quasi metric space
Ultra distance function

Corresponding Author:
Kamaleldin Abodayeh,
Prince Sultan University,
Riyadh 11586, Saudi Arabia.
Email: kamal@psu.edu.sa

ABSTRACT

In this Article, we introduce the notion of an ϵ_φ-contraction, which is based on modified ω-distance mappings, and employ this new definition to prove some fixed point result. Moreover, to highlight the significance of our work, we present an interesting example along with an application.

Copyright © 2020 Institute of Advanced Engineering and Science.
All rights reserved.

1. INTRODUCTION

One of the most important methods in mathematics used to discuss the existence and uniqueness of a solution of such equations is the Banach contraction principle [1]. It is considered as a valuable tool in fixed point theory. Since then, many mathematicians investigated the Banach contraction principle in many directions. In [2], Abodayeh et al. utilized the concept of Ω–distance to give some new generalizations of Banach contraction principle. Shatanawi, M. Postolache in [3, 4] studied some common fixed points of such mappings. For more generalizations of Banach fixed point theory, see [5–18]. In 1931 Wilson [19] introduced the notion of quasi metric space as below:

Definition 1 [19] We call the function $q : E \times E \to [0, \infty)$ a quasi metric if it satisfies:

(i) $q(e_1, e_2) = 0 \Leftrightarrow e_1 = e_2$;

(ii) $q(e_1, e_2) \leq q(e_1, e_3) + q(e_3, e_1)$ for all $e_1, e_2, e_3 \in E$.

The pair (E, q) is called a quasi metric space.

For some work in quasi metric spaces, see [20–23]

If the symmetry condition is added to (E, q) (i.e. $q(e_1, e_2) = q(e_2, e_1)$ for all $e_1, e_2 \in E$), then the space (E, q) is a metric space.

Henceforth, we denote by (E, q) a quasi metric space. To generate a metric d on E. Define $d : E \times E \to [0, \infty)$ by

$$d = \max\{q(e_1, e_2), q(e_2, e_1)\}.$$

The concepts of completeness and convergence of quasi metric spaces are given below:

Definition 2 [24, 25] A sequence (e_n) converges to $e^* \in E$ if $\lim_{s \to \infty} q(e_s, e^*) = \lim_{s \to \infty} q(e^*, e_s) = 0$.

Definition 3 [25] Let (e_n) be a sequence in E. Then we call

(i) (e_n) left-Cauchy if for any $\delta > 0$, there exists $N_0 \in \mathbb{N}$ such that $q(e_s, e_t) < \delta$ for all $s \geq t > N_0$.

(ii) (e_n) right-Cauchy if for any $\delta > 0$, there exists $N_0 \in \mathbb{N}$ such that $q(e_t, e_s) < \delta$ for all $t \geq s > N_0$.

Definition 4 [24, 25] A sequence (e_n) in E is called a Cauchy sequence if

(i) If for any $\delta > 0$, there exists $N_0 \in \mathbb{N}$ such that $q(e_s, e_t) \leq \delta$ for all $s, t > N_0$;

or

(ii) (e_n) is right and left Cauchy.

Definition 5 [24, 25] We say (E, q) is complete if every Cauchy sequence (e_n) in E is convergent.

In 2016, Alegre and Marin [26] introduced the notion of modified ω-distance mappings on (E, q).

Definition 6 [26] A modified ω-distance (shortly mω-distance) on (E, q) is a function $\rho : E \times E \to [0, \infty)$, which satisfies the following:

(W1) $\rho(e_1, e_2) \leq \rho(e_1, e_3) + \rho(e_3, e_2)$ for all $e_1, e_2, e_3 \in E$;

(W2) $\rho(e, .) : E \to [0, \infty)$ is lower semi-continuous for all $e \in E$; and

(mW3) for each $\varrho > 0$ there exists $\delta > 0$ such that if $\rho(e_1, e_2) \leq \delta$ and $\rho(e_2, e_3) \leq \delta$, then $q(e_1, e_3) \leq \varrho$ for all $e_1, e_2, e_3 \in E$.

Henceforth, we denote by ρ an mω-distance mapping.

Definition 7 [26] If ρ is lower semi-continuous on the first and second coordinates, then ρ is called a strong mω-distance.

Remark 1 [26] Every quasi metric q on E is mω-distance.

Lemma 1 [33] Let (ϱ_n), (σ_n) be two sequences of nonnegative real numbers that converge to zero. Then we have the following:

(i) If $\rho(e_s, e_t) \leq \varrho_n$ for all $s, t \in \mathbb{N}$ with $t \geq s$, then (e_n) is right Cauchy in (E, q).

(ii) If $\rho(e_s, e_t) \leq \sigma_n$ for all $s, t \in \mathbb{N}$ with $t \leq s$, then (e_n) is left Cauchy in (E, q).

Remark 2 [33] The above lemma show that if $\lim_{s, t \to \infty} \rho(e_s, e_t) = 0$, then (e_n) is Cauchy in (E, q).

For more results in fixed point theory in ω and modified $\omega-$distances, we ask the readers to consider [20, 27–31, 33, 34].

Definition 8 [35] A self function φ on $[0, \infty)$ is said to be an ultra distance function if φ satisfies $\varphi(\mu^*) = 0$ $\iff \mu^* = 0$ and if (μ^*_s) is a sequence in $[0, \infty)$ such that $\lim_{s \to +\infty} \varphi(\mu^*_s) = 0$, then $\lim_{s \to +\infty} \mu^*_s = 0$.

2. MAIN RESULTS

The definition of ϵ_{φ}-contraction on a pair of self mappings is defined as follows:

Definition 9 Equipped (E, q) with ρ and let F, T be two self mappings on E. Then the pair (F, T) is called an ϵ_{φ}-contraction if there exists an ultra distance function φ and a given $\epsilon > 0$ such that for all $e_1, e_2 \in E$ we have:

$$\varphi(Fe_1, Te_2) \leq \frac{\rho(e_1, e_2)}{\epsilon + \rho(e_1, Fe_1)} \max \left\{ \varphi(e_1, F e_1), \varphi(e_2, T e_2) \right\}.$$

And $$\varphi(Te_1, Fe_2) \leq \frac{\rho(e_1, e_2)}{\epsilon + \rho(e_1, Te_1)} \max \left\{ \varphi(e_1, T e_1), \varphi(e_2, F e_2) \right\}.$$

Next, we introduce our first result:

Theorem 2 Equipped (E, q) with ρ and let F, T be two self mappings on E such that the pair (F, T) is an ϵ_{φ}-contraction. Also, assume $\rho(e_j, e_{j+1}) = 0$ or $\rho(e_j, e_{j+1}) = 0$, for some $j \in \mathbb{N} \cup \{0\}$. Then e_j is a unique common fixed point of F and T in E.

Proof. Let $e_0 \in E$. We create a sequence (e_j) in E inductively by taking $Fe_2j = e_{2j+1}$ and $Te_{2j+1} = e_{2j+2}$ for all $j \in \mathbb{N} \cup \{0\}$.

To prove the result, we have to consider the following cases:

Case(1): $\rho(e_j, e_{j+1}) = 0$. If j is even, then $j = 2k$ for some $k \in \mathbb{N} \cup \{0\}$, so we have $\rho(e_{2k}, e_{2k+1}) = 0$ and so $\varphi(e_{2k}, e_{2k+1}) = 0$.

Now, since the pair (F, T) is an ϵ_{φ}-contraction, we get:

$$\varphi(e_{2k+1}, e_{2k+2}) = \varphi(Fe_{2k}, Te_{2k+1})$$

$$\leq \frac{\rho(e_{2k+1}, e_{2k+2})}{\epsilon + \rho(e_{2k+1}, Fe_{2k})} \max \left\{ \varphi(e_{2k}, Fe_{2k}), \varphi(e_{2k+1}, T e_{2k+1}) \right\}$$

$$= \frac{\rho(e_{2k+1}, e_{2k+2})}{\epsilon + \rho(e_{2k+1}, e_{2k+1})} \max \left\{ \varphi(e_{2k}, e_{2k+1}), \varphi(e_{2k+1}, e_{2k+2}) \right\}$$

$$= 0.$$

By the definition of φ, we have

$$\rho(e_{2k+1}, e_{2k+2}) = 0.$$

(1)

From the assumption we have $\rho(e_{2k}, e_{2k+1}) = 0$ and by (1) we get that

$$\rho(e_{2k}, e_{2k+2}) = 0.$$

(2)

Also, by using mW3 of the definition of ρ, we get that

$$q(e_{2k}, e_{2k+2}) = 0.$$

(3)

$$\varphi(e_{2k+2}, e_{2k+1}) = \varphi(Te_{2k+1}, Fe_{2k})$$

$$\leq \frac{\rho(e_{2k+1}, e_{2k+2})}{\epsilon + \rho(e_{2k+1}, T e_{2k+1})} \max \left\{ \varphi(e_{2k+1}, T e_{2k+1}), \varphi(e_{2k+2}, T e_{2k+2}) \right\}$$

$$= \frac{\rho(e_{2k+1}, e_{2k+2})}{\epsilon + \rho(e_{2k+1}, e_{2k+2})} \max \left\{ \varphi(e_{2k+1}, e_{2k+1}), \varphi(e_{2k+2}, e_{2k+2}) \right\}$$

$$= 0.$$

Therefore,

$$\rho(e_{2k+2}, e_{2k+1}) = 0.$$

(4)

ϵ_{φ}-contraction and some fixed point results ... (K. Abodayeh)
Also, using the Equations (2), (4) and mW3 of the definition of ρ, we get that

$$q(e_{2k+1}, e_{2k}) = 0. \quad (5)$$

Hence, $e_{2k} = e_{2k+1} = e_{2k+2}$ and so e_j is a common fixed point of F and T in E.

If j is odd, then $j = 2k+1$, for some $k \in \mathbb{N} \cup \{0\}$. Then we have $\rho(e_{2k+1}, e_{2k+2}) = 0$ and hence $\varphi(\rho(e_{2k+1}, e_{2k+2})) = 0$.

Thus, $\varphi(\rho(e_{2k+2}, e_{2k+3})) = \varphi(T(e_{2k+1}, F(e_{2k+2}))$.

For all j, we can prove that $\varphi(\rho(e_{2k+1}, e_{2k+2})) = 0$.

Also, using the Equations (2), (4) and mW3 of the definition of ρ, we get that

$$\varphi(\rho(e_{2k+2}, e_{2k+3})) = \varphi(T(e_{2k+1}, F(e_{2k+2}))$.

Let $L = \frac{\rho(e_{2k+1}, e_{2k+2})}{\epsilon + \rho(e_{2k+1}, e_{2k+2})}$. Then $L < 1$ and so

$$\varphi(\rho(e_{2k+2}, e_{2k+3})) < \varphi(\rho(e_{2k+2}, e_{2k+3}))$$

Thus, $\varphi(\rho(e_{2k+2}, e_{2k+3})) = 0$. By the definition φ, we get that

$$\rho(e_{2k+2}, e_{2k+3}) = 0. \quad (6)$$

From the assumption, we have $\rho(e_{2k+1}, e_{2k+2}) = 0$ and by (6), we get

$$\rho(e_{2k+1}, e_{2k+3}) = 0. \quad (7)$$

Also, Condition mW3 of the definition of ρ implies that

$$q(e_{2k+1}, e_{2k+3}) = 0. \quad (8)$$

In a similar manner, we can prove that if $\rho(e_{j+1}, e_j) = 0$, then e_j is a common fixed point of F and T in E. \qed

Next, we introduce our main result:

Theorem 3 Equipped (E, q) with ρ and let F, T be two self mappings on E. Assume the following conditions hold:

(i) (E, q) is complete;

(ii) The pair (F, T) is an ϵ_ρ-contraction;

(iii) F and T are continuous;

(iv) For all $e_1, e_2 \in E$ and some integer I we have $\rho(e_1, e_2) \leq L$.

Then F and T have a unique common fixed point in E.

Proof. Let $e_0 \in E$. Construct a sequence (e_n) in E inductively by taking $Fe_{2n} = e_{2n+1}$ and $Te_{2n+1} = e_{2n+2}$ for all $n \in \mathbb{N} \cup \{0\}$.

If for some $i \in \mathbb{N}$ we have $\rho(e_i, e_{i+1}) = 0$ or $\rho(e_{i+1}, e_i) = 0$, then by Theorem 2, e_i is a unique common fixed point of F and T in E.

Now, assume that $\rho(e_n, e_{n+1}) \neq 0$ and $\rho(e_{n+1}, e_n) \neq 0$, for all $n \in \mathbb{N} \cup \{0\}$. Since the pair (F, T) is an ϵ_φ-contraction, then we have

$$\varphi \rho(e_{2n+1}, e_{2n+2}) = \varphi \rho(Fe_{2n}, Te_{2n+1}) \leq \left(\frac{\rho(e_{2n}, e_{2n+1})}{\epsilon + \rho(e_{2n}, e_{2n+1})}\right) \max \left\{ \varphi \rho(e_{2n}, Fe_{2n}), \varphi \rho(e_{2n+1}, Te_{2n+1}) \right\} = \left(\frac{\rho(e_{2n}, e_{2n+1})}{\epsilon + \rho(e_{2n}, e_{2n+1})}\right) \max \left\{ \varphi \rho(e_{2n}, e_{2n+1}), \varphi \rho(e_{2n+1}, e_{2n+2}) \right\}.$$

If $L = \frac{\rho(e_{2n}, e_{2n+1})}{\epsilon + \rho(e_{2n}, e_{2n+1})}$, then $L < 1$.

Also, if $\max \left\{ \varphi \rho(e_{2n}, e_{2n+1}), \varphi \rho(e_{2n+1}, e_{2n+2}) \right\} = \varphi \rho(e_{2n+1}, e_{2n+2})$, we get that

$$\varphi \rho(e_{2n+1}, e_{2n+2}) \leq L \max \left\{ \varphi \rho(e_{2n}, e_{2n+1}), \varphi \rho(e_{2n+1}, e_{2n+2}) \right\} = L \varphi \rho(e_{2n+1}, e_{2n+2}) < \varphi \rho(e_{2n+1}, e_{2n+2}).$$

Thus, $\varphi \rho(e_{2n+1}, e_{2n+2}) = 0$ and so $\rho(e_{2n+1}, e_{2n+2}) = 0$ a contradiction. Therefore,

$$\varphi \rho(e_{2n+1}, e_{2n+2}) \leq \left(\frac{\rho(e_{2n}, e_{2n+1})}{\epsilon + \rho(e_{2n}, e_{2n+1})}\right) \varphi \rho(e_{2n}, e_{2n+1}).$$

$$\varphi \rho(e_{2n+2}, e_{2n+1}) = \varphi \rho(Te_{2n+1}, Fe_{2n}) \leq \left(\frac{\rho(e_{2n+1}, e_{2n+2})}{\epsilon + \rho(e_{2n+1}, e_{2n+2})}\right) \max \left\{ \varphi \rho(e_{2n+1}, e_{2n+2}), \varphi \rho(e_{2n}, e_{2n+1}) \right\} = \left(\frac{\rho(e_{2n+1}, e_{2n+2})}{\epsilon + \rho(e_{2n+1}, e_{2n+2})}\right) \max \left\{ \varphi \rho(e_{2n+1}, e_{2n+2}), \varphi \rho(e_{2n}, e_{2n+1}) \right\} = \left(\frac{\rho(e_{2n+1}, e_{2n+2})}{\epsilon + \rho(e_{2n+1}, e_{2n+2})}\right) \varphi \rho(e_{2n}, e_{2n+1}).$$

Also, we can show that:

$$\varphi \rho(e_n, e_{n+1}) \leq \left(\frac{\rho(e_{n-1}, e_n)}{\epsilon + \rho(e_{n-1}, e_n)}\right) \varphi \rho(e_{n-1}, e_n).$$

And

$$\varphi \rho(e_{n+1}, e_n) \leq \left(\frac{\rho(e_n, e_{n-1})}{\epsilon + \rho(e_n, e_{n-1})}\right) \varphi \rho(e_{n-1}, e_n).$$

Now,

$$\varphi \rho(e_n, e_{n+1}) \leq \left(\frac{\rho(e_{n-1}, e_n)}{\epsilon + \rho(e_{n-1}, e_n)}\right) \varphi \rho(e_{n-1}, e_n) \leq \left(\frac{\rho(e_{n-1}, e_n)}{\epsilon + \rho(e_{n-1}, e_n)}\right) \left(\frac{\rho(e_{n-2}, e_{n-1})}{\epsilon + \rho(e_{n-2}, e_{n-1})}\right) \varphi \rho(e_{n-2}, e_{n-1}) \leq \cdots \leq \prod_{i=1}^{n} \left(\frac{\rho(e_{n-i}, e_i)}{\epsilon + \rho(e_{n-i}, e_i)}\right) \varphi \rho(e_0, e_1).$$

Let $L_i = \left(\frac{\rho(e_{n-i}, e_i)}{\epsilon + \rho(e_{n-i}, e_i)}\right)$. Then $L_i < 1$ for all $i \in \{1, 2, \cdots, n\}$, so we have

$$\varphi \rho(e_n, e_{n+1}) \leq \prod_{i=1}^{n-1} L_i(\varphi \rho(e_n, e_{n+1})).$$

ϵ_φ-contraction and some fixed point results ... (K. Abodayeh)
Letting $n \to \infty$, we get
\[
\lim_{n \to \infty} \varphi p(e_n, e_{n+1}) = 0. \tag{14}
\]

Since φ is ultra distance function, we have
\[
\lim_{n \to \infty} \rho(e_n, e_{n+1}) = 0. \tag{15}
\]
\[
\varphi p(e_{n+1}, e_n) \leq \left(\frac{\rho(e_n, e_{n+1})}{\rho(e_n, e_{n+1})} \right) \varphi p(e_{n-1}, e_n)
\leq \left(\frac{\rho(e_n, e_{n+1})}{\rho(e_n, e_{n+1})} \right) \left(\frac{\rho(e_{n-2}, e_{n-1})}{\rho(e_{n-2}, e_{n-1})} \right) \varphi p(e_{n-2}, e_{n-1})
\leq \cdots \leq \left(\frac{\rho(e_n, e_{n+1})}{\rho(e_n, e_{n+1})} \right) \left(\frac{\rho(e_{n-1}, e_1)}{\rho(e_{n-1}, e_1)} \right) \varphi p(e_0, e_1).
\]

Let $L_i = \left(\frac{\rho(e_{i-1}, e_i)}{\rho(e_{i-1}, e_i)} \right)$. Then $L_i < 1$ for all $i \in \{1, 2, \cdots, n-1\}$ and since $\rho(e_1, e_2) \leq L$ for all $e_1, e_2 \in E$ and some integer L, we get that
\[
\varphi p(e_{n+1}, e_n) \leq L \prod_{i=1}^{n-1} L_i(\varphi p(e_0, e_1)). \tag{16}
\]

Letting $n \to \infty$, we get that:
\[
\lim_{n \to \infty} \varphi p(e_{n+1}, e_n) = 0. \tag{17}
\]

The definition of φ informs us
\[
\lim_{n \to \infty} \rho(e_{n+1}, e_n) = 0. \tag{18}
\]

Now, we need to show that (e_s) is a Cauchy sequence in E.

In order to do that, we first prove that (e_s) is a right Cauchy sequence in (E, q). For each $s, t \in \mathbb{N}$ with $s < t$, we have the following cases:

Case (1): If s odd and t even, then we have:
\[
\varphi p(e_s, e_t) = \varphi(F e_{s-1}, T e_{t-1})
\leq \left(\frac{\rho(e_{s-1}, e_1)}{\rho(e_{s-1}, e_1)} \right) \max \left\{ \varphi p(e_{s-1}, F e_{s-1}), \varphi p(e_{t-1}, T e_{t-1}) \right\}
\leq \left(\frac{\rho(e_{s-1}, e_1)}{\rho(e_{s-1}, e_1)} \right) \max \left\{ \varphi p(e_{s-1}, e_s), \varphi p(e_{t-1}, e_t) \right\},
\]
\[
= \left(\frac{\rho(e_{s-1}, e_1)}{\rho(e_{s-1}, e_1)} \right) \varphi p(e_{s-1}, e_s).
\]

Let $L_i = \left(\frac{\rho(e_{i-1}, e_i)}{\rho(e_{i-1}, e_i)} \right)$. Since $\rho(e_1, e_2) \leq L$ for all $e_1, e_2 \in E$ and some integer L, we have
\[
\varphi p(e_s, e_t) \leq L \prod_{i=1}^{s-1} L_i(\varphi p(e_0, e_1)). \tag{19}
\]

Letting $s, t \to \infty$, we have $\lim_{s, t \to \infty} \varphi p(e_s, e_t) = 0$.

Thus,
\[
\lim_{s, t \to \infty} \varphi p(e_s, e_t) = 0. \tag{20}
\]
In a similar manner, we can prove that

To prove the uniqueness of $\rho(e_{-1}, Fe_{-1})$

Using Lemma 1, we get that

If s is a Cauchy sequence in E, such that

Letting $s,t \to \infty$, we have $\lim_{s,t \to \infty} \rho(e_{s+1}, e_t) = 0$.

Case (2): If s even and t odd, then we have:

$$
\varphi \rho(e_s, e_t) = \varphi \rho(Te_{s-1}, Fe_{t-1}) \\
\leq \max \left\{ \varphi \rho(e_{s-1}, Te_{s-1}), \varphi \rho(e_{t-1}, Fe_{t-1}) \right\} \\
= \varphi \rho(e_{s-1}, e_s) \varphi \rho(e_{t-1}, e_t) \\
= \varphi \rho(e_{s-1}, e_s).
$$

Let $L_i = \left(\frac{\rho(e_{i-1}, e_i)}{\varphi \rho(e_{i-1}, e_i)} \right)$. Since $\rho(e_{i-1}, e_i) \leq L$ for all $e_{i-1}, e_i \in E$ and some integer L, then we get that

$$
\varphi \rho(e_s, e_t) \leq L \prod_{i=1}^{s-1} L_i(\varphi \rho(e_{i}, e_{i})).
$$

(21)

Letting $s,t \to \infty$, we have $\lim_{s,t \to \infty} \varphi \rho(e_s, e_t) = 0$.

So,

$$
\lim_{s,t \to \infty} \varphi \rho(e_s, e_t) = 0.
$$

(22)

Case (3): If s and t are odd, we get

$$
\rho(e_s, e_t) \leq \rho(e_s, e_{s+1}) + \rho(e_{s+1}, e_t).
$$

(23)

Hence,

$$
\lim_{s,t \to \infty} \rho(e_s, e_t) = 0.
$$

(24)

Case (4): If s and t are even, we get

$$
\rho(e_s, e_t) \leq \rho(e_s, e_{t-1}) + \rho(e_{t-1}, e_t).
$$

(25)

Hence,

$$
\lim_{s,t \to \infty} \rho(e_s, e_t) = 0.
$$

(26)

Using Lemma 1, we get that (e_s) is a right Cauchy sequence in (E,q). Similarly, we can prove that (e_s) is a left Cauchy sequence in E.

Hence, (e_s) is a Cauchy sequence in E. The completeness of (E,q) implies that there exists an element $e^* \in E$ such that $(e_s) \to e^*$.

If F is a continuous function then $e_{s+1} = Fe_s \to Fe^*$. By the uniqueness of limit, we get that $Fe^* = e^*$. In a similar manner, we can prove that $Te^* = e^*$ when T is a continuous function.

To prove the uniqueness of e^*. First we show that $\rho(e^*, e^*) = 0$.

$$
\varphi \rho(e^*, e^*) = \varphi \rho(Fe^*, Fe^*) \\
\leq \max \left\{ \varphi \rho(e^*, Fe^*), \varphi \rho(e^*, e^*) \right\} \\
= \max \left\{ \varphi \rho(e^*, e^*), \varphi \rho(e^*, e^*) \right\} \\
= 0.
$$

Therefore, $\rho(e^*, e^*) = 0$.

ϵ-contraction and some fixed point results ... (K. Abodayeh)
Assume that there exists $\mu^* \in E$ such that $F\mu^* = T\mu^* = \mu^*$. Then
\[
\varphi \rho(e^*, \mu^*) = \varphi \rho(Fe^*, T\mu^*) \\
\leq \left(\frac{\rho(e^*, \mu^*)}{\epsilon + \rho(e^*, Fe^*)} \right) \max \left\{ \varphi \rho(e^*, Fe^*), \varphi \rho(\mu^*, T\mu^*) \right\} \\
= \left(\frac{\rho(e^*, \mu^*)}{\epsilon + \rho(e^*, e^*)} \right) \max \left\{ \varphi \rho(e^*, e^*), \varphi \rho(\mu^*, \mu^*) \right\} \\
= 0.
\]

Thus, we have $\rho(e^*, \mu^*) = 0$ since $\rho(e^*, e^*) = 0$ we get that $q(e^*, \mu^*) = 0$ and so $e^* = \mu^*$. □

Corollary 4 A complete (E, q) equipped with ρ and let F, T be two self continuous mappings on E. Assume the following conditions hold:

(i) For all $e_1, e_2 \in E$ and a given $\epsilon > 0$ and an ultra distance function φ we have:

\[
\varphi \rho(Fe_1, Te_2) \leq \left(\frac{\rho(e_1, e_2)}{2(\epsilon + \rho(e_1, Ve_1))} \right) \left(\varphi \rho(e_1, Fe_1) + \varphi \rho(e_2, Te_2) \right).
\]

And

\[
\varphi \rho(Te_1, Fe_2) \leq \left(\frac{\rho(e_1, e_2)}{2(\epsilon + \rho(e_1, Te_1))} \right) \left(\varphi \rho(e_1, Te_1) + \varphi \rho(e_2, Fe_2) \right).
\]

(ii) For all $e_1, e_2 \in E$ we have $\rho(e_1, e_2) \leq L$ for some integer L.

Then F and T have a unique common fixed point in E.

Proof.
\[
\varphi \rho(Fe_1, Te_2) \leq \left(\frac{\rho(e_1, e_2)}{2(\epsilon + \rho(e_1, Fe_1))} \right) \left(\varphi \rho(e_1, Fe_1) + \varphi \rho(e_2, Te_2) \right) \\
\leq \left(\frac{\rho(e_1, e_2)}{\epsilon + \rho(e_1, Fe_1)} \right) \max \left\{ \varphi \rho(e_1, Fe_1), \varphi \rho(e_2, Te_2) \right\}.
\]

Similarly, we can prove that:
\[
\varphi \rho(Te_1, Fe_2) \leq \left(\frac{\rho(e_1, e_2)}{2(\epsilon + \rho(e_1, Fe_1))} \right) \left(\varphi \rho(e_1, Te_1) + \varphi \rho(e_2, Fe_2) \right).
\]

□

Corollary 5 A complete (E, q) equipped with ρ and let F, T be two self continuous mappings on E. Assume the following conditions hold:

(i) For all $e_1, e_2 \in E$ and for a given $\epsilon > 0$ and an ultra distance function φ and $k \in [0, 1)$ we have:

\[
\varphi \rho(Fe_1, Te_2) \leq k \varphi \rho(e_1, e_2).
\]

And

\[
\varphi \rho(Te_1, Fe_2) \leq k \varphi \rho(e_1, e_2).
\]

(ii) For all $e_1, e_2 \in E$ we have $\rho(e_1, e_2) \leq L$ for some integer L.

Then F and T have a unique common fixed point in E.
Define \(\varphi(\mu_\ast) = \mu_\ast \) and let \(k = (\frac{\rho(e_1, F_1)}{\varepsilon + \rho(e_1, F_1)}) \). Then \(k \in [0, 1) \).

Proof. Let \(\varphi(\mu_\ast) = \mu_\ast \) and let \(k = (\frac{\rho(e_1, F_1)}{\varepsilon + \rho(e_1, F_1)}) \). Then \(k \in [0, 1) \).

Now,

\[
\varphi \rho(Fe_1, Te_2) = \rho(Fe_1, Te_2) \\
\leq \frac{\rho(e_1, F(e_2))}{\varepsilon + \rho(e_1, F(e_2))} \rho(e_1, e_2) \\
= \frac{\rho(e_1, e_2)}{\varepsilon + \rho(e_1, e_2)} \rho(e_1, F(e_1)) \\
= \frac{\rho(e_1, e_2)}{\varepsilon + \rho(e_1, e_2)} \varphi \rho(e_1, F(e_1)) \\
\leq \frac{\rho(e_1, e_2)}{\varepsilon + \rho(e_1, e_2)} \max \{ \varphi \rho(e_1, F(e_1)), \varphi \rho(e_2, Te_2) \}.
\]

Similarly, we can prove that:

\[\varphi \rho(Te_1, Fe_2) \leq k \varphi \rho(e_1, e_2). \]

If we take \(F = T \) in Corollary 5, we get the following result:

Corollary 6 A complete \((E, q)\) equipped with \(\rho \) and let \(F \) be a self continuous mapping on \(E \). Assume the following conditions hold:

(i) For all \(e_1, e_2 \in E \) and for a given \(\varepsilon > 0 \) and an ultra distance function \(\varphi \) and \(k \in [0, 1) \) we have:

\[\varphi \rho(Fe_1, Fe_2) \leq k \varphi \rho(e_1, e_2). \]

(ii) For all \(e_1, e_2 \in E \) we have \(\rho(e_1, e_2) \leq L \) for some integer \(L \).

Then \(F \) has a unique common fixed point in \(E \).

Example 1 Let \(E = 0, 1, \ldots, m \) where \(m \in \mathbb{N} \).

Define \(F, T \) on \(E \) as follows:

\[
F(e_1) = \begin{cases}
0 & \text{if } e_1 \in \{0, 1\}; \\
1 & \text{if } e_1 \in \{2, 3, \ldots, 5\}; \\
2 & \text{if } e_1 \in \{6, 7, \ldots, m\}.
\end{cases}
\]

\[
T(e_2) = \begin{cases}
0 & \text{if } e_2 \in \{0, 1, \ldots, 5\}; \\
1 & \text{if } e_2 \in \{6, 7, \ldots, 10\}; \\
2 & \text{if } e_2 \in \{11, 12, \ldots, m\}.
\end{cases}
\]

Then \(F \) and \(T \) have a unique fixed point in \(E \).

Proof. To show that \(F \) and \(T \) have a unique fixed point in \(E \). Define \(\rho, q : E \times E \to [0, \infty) \) such that

\[
q(e_1, e_2) = \frac{2}{3} e_1 + \frac{1}{3} e_2.
\]

\[
\rho(e_1, e_2) = 2 e_1 + e_2.
\]

Also define \(\varphi(\mu_\ast) : [0, \infty) \to [0, \infty) \) as follows:

\[
\varphi(\mu_\ast) = \begin{cases}
(1/4) \mu_\ast & \text{if } \mu_\ast \in [0, m]; \\
(1/4)(\mu_\ast^2 + 2) & \text{if } \mu_\ast > m.
\end{cases}
\]

Then

1. \(F \) and \(T \) are continuous functions.

\(\varepsilon \varphi \)-contraction and some fixed point results ... (K. Abodayeh)
2. \(\varphi \) is an ultra distance function.

3. \((E, q)\) is a complete quasi metric space.

4. \(\rho \) is an \(m_\omega \)-distance mapping.

5. The pair \((F, T)\) is \(\epsilon_\varphi \)-contraction with \((\epsilon = 1)\)
i.e., \(\forall e_1, e_2 \in E \) we have

\[
\varphi \rho(F e_1, T e_2) \leq \left(\frac{\varphi \rho(e_1, e_2)}{1 + \varphi \rho(e_1, F e_1)} \right) \max \left\{ \varphi \rho(e_1, F e_1), \varphi \rho(e_2, T e_2) \right\}.
\]

And

\[
\varphi \rho(T e_1, F e_2) \leq \left(\frac{\varphi \rho(e_1, e_2)}{1 + \varphi \rho(e_1, T e_1)} \right) \max \left\{ \varphi \rho(e_1, T e_1), \varphi \rho(e_2, F e_2) \right\}.
\]

Now, it is an easy matter to check out that \(F \) and \(T \) are continuous functions. In addition, it is obviously that \(\varphi \) is an ultra distance function, \(\rho \) is an \(m_\omega \)-distance mapping and \((E, q)\) is a quasi metric space.

To show that \(q \) is complete, let \((e_n)\) be a Cauchy sequence in \(E \). Then for each \(s, t \in \mathbb{N} \) we have

\[
\lim_{s,t \to \infty} q(e_s, e_t) = 0
\]

we conclude that \(e_s = e_t \) for all \(s, t \in \mathbb{N} \) but not for finitely many. Therefore, \((e_n)\) is a convergent sequence in \(E \). Consequently, \((E, q)\) is a complete quasi metric space.

To prove that the pair \((F, T)\) is \(\epsilon_\varphi \)-contraction with \((\epsilon = 1)\), we need to consider the following cases:

Case (1): If \(e_1 \in \{0, 1\} \), then we have the following subcases:

Subcase (1): If \(e_2 \in \{0, 1, \ldots, 5\} \), then

\[
\varphi \rho(F e_1, T e_2) = \varphi \rho(0, 0) = 0.
\]

Subcase (2): If \(e_2 \in \{6, 7, \ldots, 10\} \), then

\[
\varphi \rho(F e_1, T e_2) = \varphi \rho(0, 1) = \varphi(1) = \frac{1}{4}.
\]

\[
\left(\frac{\varphi \rho(e_1, e_2)}{1 + \varphi \rho(e_1, F e_1)} \right) \max \left\{ \varphi \rho(e_1, F e_1), \varphi \rho(e_2, T e_2) \right\} = \left(\frac{\varphi \rho(e_1, e_2)}{1 + \varphi \rho(e_1, 0)} \right) \left[\frac{1}{2} \varphi \rho(e_2, 1) \right]
\]

\[
= \left(\frac{2 e_1 + 2}{2 e_1 + 1} \right) \left[\frac{1}{2} (2 e_2 + 1) \right]
\]

\[
\geq \frac{13}{4} \left(\frac{2 e_1 + 6}{2 e_1 + 4} \right)
\]

\[
\geq \left(\frac{13}{4} \right) \left(\frac{1}{4} \right)
\]

\[
\geq \frac{1}{4}.
\]

Subcase (3): If \(e_2 \in \{11, 12, \ldots, m\} \), then we get that

\[
\varphi \rho(F e_1, T e_2) = \varphi \rho(0, 2) = \varphi(2) = \frac{2}{4}.
\]

\[
\left(\frac{\varphi \rho(e_1, e_2)}{1 + \varphi \rho(e_1, F e_1)} \right) \max \left\{ \varphi \rho(e_1, F e_1), \varphi \rho(e_2, T e_2) \right\} = \left(\frac{\varphi \rho(e_1, e_2)}{1 + \varphi \rho(e_1, 0)} \right) \left[\frac{1}{2} \varphi \rho(e_2, 2) \right]
\]

\[
= \left(\frac{2 e_1 + 2}{2 e_1 + 1} \right) \left[\frac{1}{2} (2 e_2 + 2) \right]
\]

\[
\geq \left(\frac{2 e_1 + 12}{2 e_1 + 1} \right)
\]

\[
\geq \frac{26}{4}
\]

\[
\geq \frac{1}{4}.
\]
Case (2): If $e_1 \in \{2, 3, \cdots, 5\}$, then we have the following subcases:

Subcase (1): If $e_2 \in \{0, 1, \cdots, 5\}$, then we have

$$
\varphi(p(Fe_1, Te_2) = \varphi(1, 0) = \varphi(2) = \frac{2}{4}.
$$

$$
\left(\frac{\rho(e_1, e_2)}{1 + \rho(e_1, Fe_1)} \right) \max \left\{ \varphi(p(e_1, Fe_1), \varphi(p(e_2, Te_2) \right\} \geq \left(\frac{\rho(e_1, e_2)}{1 + \rho(e_1, 1)} \right) \left[\frac{1}{4} \rho(e_1, 1) \right]
$$

$$
= \left(\frac{2e_1 + e_2}{2e_1 + 2} \right) \left[\frac{1}{4} (2e_1 + 1) \right]
$$

$$
\geq \frac{1}{4} \left(\frac{2e_1 + 1}{2} \right)
$$

Subcase (2): If $e_2 \in \{6, 7, \cdots, 10\}$, then we get that

$$
\varphi(p(Fe_1, Te_2) = \varphi(1, 1) = \varphi(3) = \frac{3}{4}.
$$

$$
\left(\frac{\rho(e_1, e_2)}{1 + \rho(e_1, Fe_1)} \right) \max \left\{ \varphi(p(e_1, Fe_1), \varphi(p(e_2, Te_2) \right\} = \left(\frac{\rho(e_1, e_2)}{1 + \rho(e_1, 1)} \right) \left[\frac{1}{4} \rho(e_2, 1) \right]
$$

$$
= \left(\frac{2e_1 + e_2}{2e_1 + 2} \right) \left[\frac{1}{4} (2e_1 + 1) \right]
$$

$$
\geq \frac{1}{4} \left(\frac{2e_1 + 1}{12} \right)
$$

Subcase (3): If $e_2 \in \{11, 12, \cdots, m\}$, then we get that

$$
\varphi(p(Fe_1, Te_2) = \varphi(1, 2) = \varphi(4) = 1.
$$

$$
\left(\frac{\rho(e_1, e_2)}{1 + \rho(e_1, Fe_1)} \right) \max \left\{ \varphi(p(e_1, Fe_1), \varphi(p(e_2, Te_2) \right\} = \left(\frac{\rho(e_1, e_2)}{1 + \rho(e_1, 1)} \right) \left[\frac{1}{4} \rho(e_2, 2) \right]
$$

$$
= \left(\frac{2e_1 + e_2}{2e_1 + 2} \right) \left[\frac{1}{4} (2e_2 + 2) \right]
$$

$$
\geq 6 \left(\frac{2e_1 + 1}{2e_1 + 2} \right)
$$

$$
\geq \frac{2}{7}
$$

$$
\geq 1.
$$

Case (3): If $e_1 \in \{6, 7, \cdots, m\}$, then we have the following subcases:

Subcase (1): If $e_2 \in \{0, 1, \cdots, 5\}$, then we have

$$
\varphi(p(Fe_1, Te_2) = \varphi(2, 0) = \varphi(4) = 1.
$$

$$
\left(\frac{\rho(e_1, e_2)}{1 + \rho(e_1, Fe_1)} \right) \max \left\{ \varphi(p(e_1, Fe_1), \varphi(p(e_2, Te_2) \right\} = \left(\frac{\rho(e_1, e_2)}{1 + \rho(e_1, 1)} \right) \left[\frac{1}{4} \rho(e_2, 2) \right]
$$

$$
= \left(\frac{2e_1 + e_2}{2e_1 + 3} \right) \left[\frac{1}{4} (2e_1 + 3) \right]
$$

$$
\geq \frac{1}{4} \left(\frac{2e_1 + 1}{1} \right)
Subcase (2): If \(e_2 \in \{6, 7, \ldots, 10\} \), then we have

\[
\varphi \rho(F e_1, T e_2) = \varphi \rho(2, 1) = \varphi(5) = \frac{5}{4}.
\]

\[
\left(\frac{\rho(e_1, e_2)}{1 + \rho(e_1, F e_1)}\right) \max \left\{ \varphi \rho(e_1, F e_1), \varphi \rho(e_2, T e_2) \right\} \geq \left(\frac{\rho(e_1, e_2)}{1 + \rho(e_1, F e_1)}\right) \left[\frac{1}{2} \rho(e_1, 2)\right] = \left(\frac{2e_1 + e_2}{2e_1 + 3}\right) \left[\frac{1}{2}(2e_1 + 2)\right] \geq \frac{21}{4}.
\]

Subcase (3): If \(e_2 \in \{11, 12, \ldots, m\} \), then we get that

\[
\varphi \rho(F e_1, T e_2) = \varphi \rho(2, 2) = \varphi(6) = \frac{6}{4}.
\]

\[
\left(\frac{\rho(e_1, e_2)}{1 + \rho(e_1, F e_1)}\right) \max \left\{ \varphi \rho(e_1, F e_1), \varphi \rho(e_2, T e_2) \right\} \geq \left(\frac{\rho(e_1, e_2)}{1 + \rho(e_1, F e_1)}\right) \left[\frac{1}{2} \rho(e_2, 2)\right] = \left(\frac{2e_1 + e_2}{2e_1 + 3}\right) \left[\frac{1}{2}(2e_2 + 2)\right] \geq \frac{6}{4}.
\]

In a similar manner, we can show that:

\[
\varphi \rho(T e_1, F e_2) \leq \left(\frac{\rho(e_1, e_2)}{1 + \rho(e_1, T e_1)}\right) \max \left\{ \varphi \rho(e_1, T e_1), \varphi \rho(e_2, F e_2) \right\}.
\]

Consequently, the pair \((F, T)\) satisfies the conditions of Theorem 3 ensures that \(F\) and \(T\) have a unique common fixed point in \(E\). □

3. APPLICATION

Theorem 7 Let \(m = 2^n \) with \(n \in \mathbb{N} \). Then the function

\[
F(x) = \left(1 - x^m\right)/(\eta - x^m), \quad \text{where } \eta \geq m + 2
\]

has a unique fixed point in \([0, 1]\).

Proof. Let \(E = [0, 1] \). Define \(q : E \times E \to [0, \infty) \) by \(q(e_1, e_2) = |e_1 - e_2| \). Then \((E, q)\) is a complete quasi metric space. Also, define \(\rho : E \times E \to [0, \infty) \) by \(\rho(e_1, e_2) = |e_1 - e_2| \). Then \(\rho \) is an \(m\omega\)-distance mapping. Now, equipped \((E, q)\) with \(\rho \).

Also, define \(\varphi : [0, \infty) \to [0, \infty) \) by

\[
\varphi(\mu) = \begin{cases}
\mu & \text{if } \mu \in [0, 1]; \\
(1/9)(\mu^2 + 1) & \text{if } \mu > 1.
\end{cases}
\]
Note that φ is an ultra distance function. Now,

$$
\varphi \rho(Fe_1, Fe_2) = \left| \frac{1 - e_1^m}{\eta - e_1^m} - \frac{1 - e_2^m}{\eta - e_2^m} \right|
= \left| \frac{(1 - e_1^m)(\eta - e_2^m) - (1 - e_2^m)(\eta - e_1^m)}{(\eta - e_1^m)(\eta - e_2^m)} \right|
= \left| \frac{(\eta - 1)(\eta - e_1^m)(\eta - e_2^m)}{(\eta - e_1^m)(\eta - e_2^m)} \right| \left| e_1^m - e_2^m \right|
= \left| e_1^m - e_2^m \right|
\leq \frac{(\eta - 1)(2^n)}{(\eta - 1)^2} \left| e_1 - e_2 \right|
= \frac{(\eta - 1)(m)}{(\eta - 1)^2} \left| e_1 - e_2 \right|
= \frac{(\eta - 1)(m)}{(\eta - 1)^2} \varphi \rho(e_1, e_2).
$$

By taking $k = \frac{(\eta - 1)(m)}{(\eta - 1)^2}$ then $k < 1$ and noting that F is continuous, we deduce that F satisfies all conditions of Corollary 6. Therefore, F has a unique fixed point in E. \(\square\)

Example 2 The function

$$
F(x) = \left[\frac{1 - x^{128}}{130 - x^{128}} \right]
$$

has a unique fixed point in \([0, 1]\).

Proof. By applying Theorem 7 with $m = 128$ and $\eta = 130$. \(\square\)

4. **CONCLUSION**

Based on the definition of modified ω-distance mappings, the notion of the ϵ_φ-contraction was introduced. By employ this new definition, we proved some fixed point result. An example was introduced to show the validity and reliability of our new results.

ACKNOWLEDGEMENT

The first and the third authors thank Prince Sultan University for supporting this paper through the research group RG-DES-2017-01-17.

REFERENCES

ϵ_φ-contraction and some fixed point results ... (K. Abodayeh)

[29] T. Qawasmeh, A. Tallafha, and W. Shatanawi, Fixed Point Theorems through Modified ω−Distance and Application to Nontrivial Equations, Axioms 2019, 8, 57; doi:10.3390/axioms8020057

BIOGRAPHIES OF AUTHORS

Kamaleldin Abodayeh received the M.Sc. degree in Functional Analysis from University College Dublin and his Ph.D. from University College Cork, Ireland in 1997. He had his Postdoctoral in the department of Process Engineering at University College Cork. He published more than 40 papers in various areas of Pure and Applied Mathematics. His research area includes Functional Analysis, Theoretical Physics, Discrete Potential theory, and Fixed Point theory. Since 2001, he works at Prince Sultan University, Saudi Arabia.

Tariq Qawasmeh Received M.Sc. degrees in Mathematics from Yarmouk University in 2016, Jordan. Currently, he is a Ph.D. Candidate in Mathematics in the University of Jordan. He has published three Articles and also, two were accepted. These Articles in modified - distance mappings and in fuzzy sets and fuzzy logic.

Wasfi Shatanawi is a professor of Mathematics in the Department of Mathematics at Prince Sultan University. Shatanawi completed his PhD study from Carleton University/Canada in 2001. He published more than 120 papers in high standard journals. Shatanawi is one of the most influential scientific minds in the world; he has been listed in highly cited researchers list for the years 2015, 2016, 2017 and 2018 according to Clarivate Analytic (previously Thomson Reuters). Shatanawi is an editor in many reputable journals.

Abdalla Tallafha is a professor of Mathematics in University of Jordan. Tallafha has obtained award of Ph. D degree in the subject Mathematics (Functional analysis) in 1992 from Middle East Technical University, Ankara Turkey. His area of research is Kothe Spaces, CDH spaces, Semi-linear Uniform Spaces. He has 86 research articles published in peer reviewed/indexed National/ International journals. He has been worked as a reviewer for several journals. He also delivered invited talk/ guest lectures at various national/international conference and refresher/orientation courses.