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 Channel coding is commonly based on protecting information to be 

communicated across an unreliable medium, by adding patterns of 

redundancy into the transmission path. Also referred to as forward error 

control coding (FECC), the technique is widely used to enable correcting or 

at least detecting bit errors in digital communication systems. In this paper 

we study an original FECC known as polar coding which has proven to meet 

the typical use cases of the next generation mobile standard. This work is 

motivated by the suitability of polar codes for the new coming wireless era. 

Hence, we investigate the performance of polar codes in terms of bit error 

rate (BER) for several codeword lengths and code rates. We first perform a 

discrete search to find the best operational signal-to-noise ratio (SNR) at two 

different code rates, while varying the blocklength. We find in our extensive 

simulations that the BER becomes more sensitive to operational SNR 

(OSNR) as long as we increase the blocklength and code rate. Finally, 

we note that increasing blocklength achieves an SNR gain, while increasing 

code rate changes the OSNR domain. This trade-off sorted out must be taken 

into consideration while designing polar codes for high-throughput 

application. 
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1. INTRODUCTION 

Over last years, wireless applications have been growing fast and requiring more challenging coding 

schemes. Recently, polar codes were proven to be capacity achieving for binary discrete memoryless channel 

(B-DMC). Combined with high order modulation, polar code is powerful candidate for the next generation 

mobile standard, where high transmission power efficiency and bandwidth efficiency are required [1]. 

Fortunately, both polar encoding and decoding are of low complexity, so need minimum time and space, and 

this match green energy requirement [2]. The performance of polar codes enables their application in varying 

channels, which tackles the universal coverage requirement. On the other side, complex use scenarios result 

in heterogeneous networks where polar codes can find their suitable applications. Therefore, these codes have 

become one popular topic and drawn intensive attentions from both academia and industry. Recent research 

progresses on polar codes can be mainly categorized into two trends: 1) advanced decoding algorithms for 

polar codes, and 2) efficient hardware implementation methods for polar codes [2]. 

Polar codes are linear block codes that rely on a polarization phenomenon. The advent of polar 

codes is based on the channel polarization theory. The core idea of polar coding is to split a given vector 

channel into multiple correlated bit channels and to use only the good ones, in the sense that they are either 

extremely noisy or noiseless. Then, one can employ a separate sequential decoder on each sub-channel.  

Polar codes have performed state-of-the-art codes of larger block lengths and code rates. Polar codes can also 
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be used for source coding, but this use will not be discussed in this paper. In the level of theoretical analysis 

and development, substantial recent research progress has been achieved and reported. A by no means 

complete list of references is [3, 4], see also [5] and the references therein. The aim of this paper is to 

demonstrate how the code changes with the OSNR and the block length as well as the code rate for  

the additive white Gaussian noise (AWGN) channel. Since it is not known what impact has the OSNR on  

the BER performance of polar codes, this paper aims to open the related discussion. As concluded in [6] all 

polar code constructions are equally good in AWGN if the OSNR is optimized for the best performance. 

Thus in our work we may use simple algorithm only, namely Bhattacharyya bounds based construction.  

The readers wanting to go deeper into the current study may experiment separately the orthogonal frequency-

division multiplexing (OFDM) [7-24] and exploit our approach to get the effect of such modulation 

technique on the performance of the code construction. Obviously, OFDM is still an ultimate candidate for 

wireless applications, since it allows resolving the well-known problem of spectrum underutilization [25]. 

The remainder of this paper is outlined as follows. Section 2 describes polar codes that we study in this work. 

In Section 3 we review a simplest construction to select the bit-channels over which the information bits are 

transmitted. The decoder adopted is introduced in Section 4. Afterwards, simulation results are provided in 

Section 5. Finally, conclusions and future works follow in Section 6. 

 

 

2. POLAR CODING 

Let ( , )N K be a linear bock code, where 2 nN  is the code length, n is an arbitrary integer, K  is 

the code dimension, the code rate of such coding scheme is defined by R K N , 0  K N . A binary 

polar code is completely specified by a triple ( , , )FN K , where F ,  F N K is the set of the frozen 

bit indices. The remaining K elements are called the information bits indices. Let 

n fois

   nF F F  be  

the n-fold Kronecker product of Arikan’s standard polarizing kernel 
1 1

0 1

 
 
 

F . The matrix nF  denotes 

the n-th tensor power of F and could be evaluated by applying the Kronecker product recursively according 

to 
( 1)   n nF F F . Then for a vector of information bits u  of length K , a codeword is generated as 

 

 x G u  (1) 

 

where ( ) C

nG F  is the generator matrix of polar code which picks a specific subset of K rows of  

the N N  matrix, and  0,1, , 1 \F FC N  corresponds to the set of non-frozen bit indices. Implicitly, 

with respect to classical N N matrix based encoding, the frozen bits F are set to zero and we follow this 

convention throughout the paper. Consider a channel W is used for transmitting the information between 

input and output. Let 1 2( , , , ) Nx x x x  be the inputs vector and 1( , , ) Ny y y be the outputs vector.  

Given a binary-input channel : W X Y  with  0,1X  , the Bhattacharyya parameter ( )Z W can be used 

to measure the error performance of the channel. In general, we can choose the positions of the information 

bits and frozen bits by their Bhattacharyya parameter ( )Z W , which can be defined as the upper bound of  

the decision error probability when the channel is used to transmit zero or one as follows: 

 

( ) ( | 0) ( |1)
y Y

Z W p y p y
 

(2) 

 

where ( | )p y s  is the conditional probability of the received y provided that  0,1s  is transmitted.  

As the bit-channels start polarizing, they approach either noiseless good bit-channel or a pure-noise bad bit-

channel. The Bhattacharyya parameter indicates that the fraction of bit channels approaches the mutual 

information ( )I W  as n . Even though systematic variants of polar encoding do exist, we construct  

the original polar codes which are non-systematic, and being a linear code, the encoding simply needs 

a matrix multiplication. Once the code size is larger, matrix multiplication becomes computationally 

expensive as far as 
2( )O N . Thus, in our work we use an alternative implementation based on FFT’s butterfly 

circuit model, which exhibits significantly reduced computational complexity of ( log ).O N N  In our polar 

code design, we use recursive estimation of the just introduced Bhattacharyya parameters of bit-channels, 

which is going to be detailed in the next section. 
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3. THE CODE CONSTRUCTION 

Recall that polar code construction is ranking algorithm that selects K  best among N possible 

polar bit-channels, in terms of the bit error rate at a given initial value defined as the OSNR. The choice 

of the set of frozen bit F is an important step in polar coding often referred to as polar code 

construction. The original algorithm of polar codes is based on the evolution of simple bounds on  

the Bhattacharyya parameters of bit channels. Due to its simplicity, this construction has been widely 

used, and produced good polar codes. The basic idea is to create a coding system where one can access 

each bit-channel individually and send data only through those for its Bhattacharyya parameter is close 

to 0. The Bhattacharyya parameter ( )Z W  is an upper bound on the error probability of transmission 

over W with maximum likelihood (ML) decision when the channel is used only once to transmit 

a 0 and 1. Intuitively, channels with ( ) Z W  are almost noiseless, while channel with ( ) 1  Z W  are 

almost pure-noise channel for a given 0 1  . The Bhattacharyya parameter of channel plays  

an important part in the construction of Polar codes. For a more detailed exposi tion, we confer  

the following recursion for 0, , 1 j n  with initial 0,0

 RSz e  chosen to optimize the code 

performance at a certain ( RS ), where S is the SNR value. 

 
2

, ,

2 11,

, 2

2 0 2

2 2 



   
 

  j

j

j i j i

j jj i

j i

z z i
z

z i
 (3) 

 

The indices of the highest N K  values in the set of N  final stage values  , : 0, , 1 n iz i N

form the set F . The code rate R can be varied by adding or deleting subchannels from the good 

subchannel set. With code length N increasing to infinity, bit-channels polarize to be nearly noiseless or 

useless [1]. After performing channel polarization transform, the good subchannels are assigned 

information bits and the bad ones are set frozen bits. Let such a channel be defined by the transition 

probabilities ( | )W y x ,  0,1 x X  and y Y . Based on (2), the definition of the Bhattacharyya parameter 

of W extended from discrete to continuous channel is given by 

 

( ) ( | 0) ( |1) Z W W y W y dy  (4) 

 

where ( | )W y s  is the transition probability of receiving y  when  0,1s  has been sent. Then we 

analyze the initial value of ( )Z W  for Gaussian channel. At first, the initial value of Bhattacharyya 

parameter is definitely difficult since channels are continuous. Suppose there is a communication link 

with Gaussian noise with expectation zero and variance 2 . At the same time, BPSK is used as 

modulation. The recursive algorithm of construction requires an initial value, corresponding to the worst 

BER and may be replaced with 0 bRE Ne , where bE  the energy spent per each information bit and 

2

0 2 N . Moreover, the initial value of Bhattacharyya parameter is not suitable for all 

communication channels since polar codes are channel specific designs. By definition of polar codes, 

the construction should be repeated at every time channel changes. Nevertheless, we wish to construct 

a polar code at one OSNR and use it for a range of possible SNRs. This way, we use a unique code 

created by running the code-construction at a single value of the channel-state and keeping the code 

unchanged for all channel conditions. As we see later, it is crucial to properly select the adequate OSNR 

given rate and blocklength for the performance in terms of bit error rate. 

 

 

4. THE NATIVE DECODING 

It is proven in [26] that for any ( , )N K  polar code on any B-DMC, there exists an encoder and  

a decoder known as successive cancellation (SC) decoder, each with the same order of complexity 

( log ).O N N  We assume that the decoder considered in the system is a SC decoder, for which polar codes 

are tailored. SC algorithm, which decodes each bit in a successive manner, is usually employed and proposed 

as sub-optimal approach. By taking advantage of the polarization effect, polar codes can achieve  

the symmetric capacity of binary memoryless channels with low complexity SC decoding strategy [1]. 

Being fundamental for all the later advanced decoders that exhibit superior performance, one cannot avoid 
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having an SC decoder. The SC algorithm traverses the entire polar code tree depth first, visiting all leaf 

nodes [27]. From decoding viewpoint, constructing a polar code of dimension K is equivalent to finding 

the K best bit-channels that model the channel that the decoder sees when it recovers one by one 

the information bits corresponding to the received codeword by the SC decoder [28]. According to 

the construction of polar codes, two groups of bits are established from the many independent copies of 

channels. The first group is the information bits  :1  
FC iU u i K  and the second one is the frozen bits 

 :1   F jU u j N K  that are made known to the decoder. The log-likelihood ratios (LLR) of 

the channel are calculated as 

 

( | 0)
( ) ln

( | 1)






i i
i

i i

p y x
LLR y

p y x
 (5) 

 

The SC applies the recursive calculations on the received LLRs from (5) and the decision function 

for the SC decoder is defined by 

 
1

1 1

1

1 1

0, ( , ) 0ˆ
1, ( , ) 0





 
 



N i

i N i

LLR y U
U

LLR y U
 

(6) 

 

where 
1

1 1( , )N iLLR y U  is equivalent to the likelihood ratio of iU  given the channel output Y and 
1

1

iU which 

are found previously by the decoder. It should be mentioned that, for the first bit 
1Û  value, the decoder uses 

only y for the decision. In our simulation we use an implementation of the basic successive cancellation 

decoder, which we believe to be the simplest implementation possible. 

 

 

5. NUMERCIAL RESULTS AND DISCUSSION 

In this section we report the results of our simulations. We consider comparing the performance of 

polar codes from various parameters. Even if the error performance of polar codes with short codeword 

length is already described by [4] as mediocre under SC algorithm, we insist on considering blocklength 

N=256 in addition to two new blocklengths, namely N=1024, N=4096. For each blocklength we consider 

only high code rate R=5/6. The conditions of simulation are described in Table 1. 

 

 

Table 1. Simulation parameters 
Parameter name  Value 

Minimum block samples  1000 

Minimum bit errors  100 

Modulation  BPSK 

Channel  AWGN 

 

 

The transmission is supposed to be over an AWGN channel with zero mean. Without loss of 

generality, we normalize the noise variance to be unity in the remainder of our simulation. Bits in codeword 

are modulated using binary phase shift keying (BPSK). We ensure a practical values of BER (e.g. order of 

10-3 and less), and guarantee a minimum of 1000 block samples. For each evaluated SNR, we achieve at least 

100 bit errors. In order to study the impact of OSNR on BER performance, we use the discrete search of 

OSNR over a finite interval. We carry out simulations and we plot the results in logarithmic domain.  

The discrete search consists on spanning the whole interval starting from the OSNR -5dB as initial point 

when necessary. The search is pursued further by incrementing OSNR as long as the BER improves. We stop 

the discrete search once the BER performance degrades for at least one from the next OSNRs. By this way, 

we retrieve the candidate OSNR whose BER curve is the first one, which crosses the uncoded curve.  

We confirm the BER degradation by using some greater value of OSNR (e.g. 10dB). Note that in each figure, 

the important portion of the BER curves is magnified, where curves of studied codes cross the curve of  

the uncoded system. 

Figure 1 illustrates SNR versus BER for N=256 at R=5/6. It can be noted that almost all OSNRs 

offer the same performance. It is also shown that the uncoded case offers better performance in terms of BER 

than the coded one since SNR is less than 3.77dB. According to our adopted method based on discrete 

search, the candidate OSNR is 1dB. Increasing N to 1024 makes the performance weakly sensitive to  
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the OSNR, as depicted in Figure 2. It is shown once again that the uncoded case offers better performance 

than the coded one since SNR is less than 3.65dB for R=5/6. From the zoom part, the candidate OSNR is 3dB 

for R=5/6. 
 

 

 
 

Figure 1. Impact of OSNR on BER performance for N=256 at R=5/6 
 

 

 
 

Figure 2. BER sensitivity to OSNR for N=1024 at R=5/6 

 

 

Figure 3 depicts the performance of polar codes produced for N=4096 at R=5/6. Unlike smaller 

blocklength, it is shown that for N=4096 the BER becomes plainly sensitive to OSNR. The uncoded system 

offers better performance than the coded one in terms of BER since SNR is less than 3.468dB. It can be noted 

that the candidate OSNR is 5dB. For instance, the BER degradation starts at OSNR > 5dB and degrades 

dramatically when OSNR reaches 10dB.  As recapitulation, increasing blocklength makes BER performance 
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sensitive to OSNR. It is indeed critical to construct polar code with a good BER performance. This has been 

already stated in [6] but only for blocklength N=2048 and code rate R=1/2. To avoid confusion and stress  

the differences, let us summarize the results in Table 2. The candidate OSNR corresponds to a selected value 

according to the discrete search method. Figure 4 illustrates the construction chart for code rate R=5/6. 

Clearly for a given code rate R; the higher blocklength is, the earlier the coded system outperforms  

the uncoded one. 

The curves demonstrate the BER performance versus SNR for the code rate R=5/6. While 

constructing polar code with rate R=5/6, increasing blocklength from N=256 to N=4096 achieves the SNR 

gain of Gain=1.2dB at the BER of 10-4. This trade-off sorted out must be taken into consideration while 

constructing polar codes for high-throughput application. 
 

 

 
 

Figure 3. Impact of OSNR on BER performance for N=4096 at R=5/6 

 

 

 
 

Figure 4. Construction chart for code rate R=5/6 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 3, June 2020 :  3200 - 3207 

3206 

Table 2. Impact of OSNR on BER sensitivity for code rate R=5/6 
Code length Sensibility Candidate OSNR 

256 Low 1 

1024 Medium 3 

4096 High 5 

 

 

6. CONCLUSION 

We restudied in this paper the non-universality of polar codes. We performed a discrete search to 

find the best OSNR for code construction. We then compared BER performances for three codeword lengths 

and observed that for short one the effect of OSNR is meaningless even for higher code rate. It is also 

observed that for long blocklength, OSNR have huge impact on BER performance. In this paper, the BER 

performance analysis is summarized to clarify discussion on construction perspective. We assume that  

the proposed chart contributes to pave the path towards this end. The results shown are preliminary and  

the work needs to be extended further to prove that the study is indeed viable for Rayleigh fading channel, 

or even Nakagami-m fading channel. We intend to investigate in a future work the performance analysis of  

the considered construction under orthogonal frequency-division multiplexing (OFDM). Such system 

authorizes division of the bandwidth into narrow orthogonal sub channel, and this is useful to optimize  

the spectrum use. However, concerning polar codes, the decoding performance of SC algorithm is still not 

satisfying. We may obtain better performance using an iterative decoder. There is also a need to study  

the effect of initial value of Bhattacharyya parameter on system’s performance in a future work. 
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