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 This work proposes an algorithm oriented to the detection of tuberculosis 

bacilli in digital images of sputum samples, inked with the Ziehl Neelsen 

method and prepared with the direct, pellet and diluted pellet methods. 

The algorithm aims at automating the optical analysis of bacilli count and 

the calculation of the concentration level. Several algorithms have been 

proposed in the literature with the same objective, however, in no case is 

the performance in sensitivity and specificity evaluated for the 3 preparation 

methods. The proposed algorithm improves the contrast of the colors of 

interest, then thresholds the image and segments by labeling the objects of 

interest (bacilli). Each object then has its geometrical descriptors and 

photometric descriptors. With all this, a characteristic vector is formed, which 

are used in the training and classification process of an SVM. For the training 

225 images obtained by the 3 preparation methods were used. The proposed 

algorithm reached, for the direct method, a sensitivity level of 93.67% and a 

specificity level of 89.23%. In the case of the Pellet method, a sensitivity of 

92.13% and a specificity of 82.58% was obtained, while for diluted Pellet 

the sensitivity was 92.81% and the specificity 83.61%. 
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1. INTRODUCTION  

The automation of the optical analysis of sputum samples inked with the Ziehl-Neelsen method [1] is 

still quite required in different medical centers in different parts of the world that use microscopy to evaluate 

the samples and determine the presence of tuberculosis bacilli and their respective concentration  

[2, 3]. The automation process seeks to reduce the time of obtaining results and improve the precision with 

respect to that obtained by visual inspection by a medical specialist [4].   

The evaluation of the detection algorithms is done through the parameters of sensitivity and 

specificity. These parameters allow to compare the results of the algorithm with those obtained by coincidence 

of more than one specialist or observer. Sensitivity measures the algorithm's ability to correctly detect objects 

that are actually bacilli, while specificity measures the ability to correctly detect objects that are not bacilli. 

Both parameters are expressed as a percentage, and the closer to 100% they are, the greater the performance of 

the algorithm will be. Several computational algorithms have been proposed in the literature in order to be able 

to execute the analysis of the samples and provide results in the same scheme that a specialist would do. 
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Costa et al. [5] were the first to propose an automatic TB bacilli identification method for images 

acquired with bright field microscopy based on image processing techniques. In their work, they used images 

that resulted from subtracting the R component minus the G component (R-G) from the RGB color format. 

Their analysis shows that bacilli are more visible in images (R-G) than in RGB images or HSI images. 

To segment the bacilli, the authors used the histogram from the R-G image and a threshold value was 

calculated. Morphological and size filters were subsequently applied to remove artifacts from the segmented 

images. The results presented in the paper were promising; however, his method showed a low sensitivity 

(76.65%).  

A Bayesian segmentation method was used in Sadaphal et al. [6] to segment the bacilli. 

Once the object of interest was segmented, the objects were classified as TB bacilli or non-TB bacilli according 

to their shape characteristics. The authors used shape descriptors such as axis ratio and eccentricity. However, 

they do not indicate results obtained from the application of their proposal.  

Osman et al [7] used a single-layer feed-forward neural network trained by the Extreme Learning 

Machine (ELM) technique. The neural network genetic algorithm (GA-NN) approach was used in [8] and 

the single-layer compact occult feed-forward neural network (C-SLFN) trained by an improved ELM method 

was applied in [9]. Although the above methods produced acceptable results, the efficacy of the methods was 

not demonstrated with images with different backgrounds. The nature of the background is an important factor 

affecting the performance of most autofocus and TB detection methods. Thus, the best result was obtained 

in [8] where accuracy of test classification was achieved ranging from 84.64% to 88.21% with an average of 

86.32%.  

In 2010, Zhai et al. [10] proposed an automatic image capture system and the application of methods 

for the detection of TB bacilli. An automatic approach was used for the capture system, using a moving plate 

that can be moved in the x, y and z coordinates with the help of a stepper motor. The authors performed two-

stage segmentation such as coarse and fine segmentation by converting RGB images into HSV and CIE Lab 

color spaces. Its detection process for each sputum sample takes from 3 to 5 minutes. The results obtained for 

95% of the images processed are more than 80% accurate. The images with an accuracy between 81% and 

90% represent 72% of the 100 processed images.   

CostaFilho et al. developed a neural network approach in [11]. This method initially classifies 

the image into a low-density or high-density background image using the image hue component of the HSI 

color model and a set of color characteristics for segmentation and classification. For high-density background 

images, the color ratio was used as an additional parameter for efficient sorting. The overall sensitivity obtained 

was 91.53%, while the false detection was 8.51%.  

Again Costa et al. [12] provides an image database to test for the detection of tuberculosis bacilli in 

2014. The database consists of two parts: an autofocus database with 1200 images and a segmentation and 

classification database with 120 images. The images with different backgrounds in the database will help 

conduct extensive experiments to see how existing and new methods work under various conditions. 

These marked objects could be used as gold standard to calculate the accuracy, sensitivity and specificity of 

bacillus recognition. In this case no sensitivity and specificity results of bacillus detection are presented.    

Ayas et al. [13] proposed a segmentation and classification method based on the randon forest (RF) 

learning method.  The experimental analysis proposed by the method performs better than other conventional 

classification methods, such as artificial neural networks (ANNs) and support vector machines (SVMs). 

Although many methods were presented for segmentation of TB bacilli from conventional microscopic images, 

a common drawback of most methods is their inability to classify superimposed bacilli as true bacilli. 

The sensitivity and specificity of the proposed classifier are greater than 75.77 and 96.97% for pixel 

segmentation, respectively. It is also mentioned that sensitivity is increased to more than 93% when staining is 

performed according to the procedure.  

Panicker et al.[14] in 2018, present an automatic method for the detection of Tuberculosis (TB) bacilli 

by image binarization and subsequent classification of regions detected using a convolutional neural network. 

They evaluated the algorithm using a data set of 22 images with different backgrounds (high density and low 

density images). The experimental results show that the proposed algorithm achieves 78.4% accuracy and 

86.76% F-score for TB detection. In the present work, although the image processing and classification 

techniques are well known, they have been adapted and improved aiming to obtain the best results for each 

preparation method in Ziel Neelsen bacilocopy: direct method, Pellet and diluted Pellet. 

 

 

2. RESEARCH METHOD  

Figure 1 shows the block diagram of the proposed algorithm. The image of the sputum sample 

prepared by a specific method (direct, pellet or diluted pellet) is digitized through a digital camera installed in 

an optical microscope. The format of the acquired image is RGB (Red-Green-Blue). The obtained image is 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 :  2968 - 2981 

2970 

treated by the different stages of the processing algorithm that are described below. Sample preparation 

methods are also described. 

 

 

 
 

Figure 1. Proposed method flowchart 

 

 

2.1. Sample preparation 

Three types of ZN inked sputum baciloscopy are used in this paper. First, there is direct smear staining, 

which consists of staining sputum samples on a slide as shown in Figure 2(a) without treatment to purify and 

concentrate them refer Figure 2(b). On the other hand, concentrated baciloscopy or pellet is the staining of 

the samples with decontamination and concentration treatment refer Figure 2(c). Finally, dilute baciloscopy or 

dilute pellet is the staining of samples from the concentrated but diluted sample as shown in Figure 2(d). 

 

 

  
(a) 

 

(b) 

  
(c) (d) 

 

Figure 2. Sample preparation methods: (a) Object carrier plate, (b) ZN baciloscopy image by direct method, 

(c) ZN baciloscopy image by pellet method, (d) ZN baciloscopy image by diluted pellet method 
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2.2. Acquisition of images 

All samples, under the three preparation methods, were obtained using a MiniVID microscope camera 

with CMOS sensor. The images were acquired in RGB color model (8 bits per band) with spatial resolution of 

2592 x 1944 pixels and stored in bitmap format (.bmp). This RGB image is made up of component R expressed 

as 𝑅(𝑥, 𝑦), component G expressed as G(𝑥, 𝑦) and component B expressed as B(𝑥, 𝑦). 

 

2.3. Image enhancement 

The image enhancement process consists of two parts. The first part is to apply consecutively an 

enhancement filter and a contrast adjustment process. This will allow the edges of the bacilli to be more intense. 

To apply the enhancement filter, you must first convert from the RGB color model to the CIE color model 

𝐿∗𝑎∗𝑏∗[15]. The components of this image are the L component expressed as 𝐿(𝑥, 𝑦) and the components 

a∗ and b∗  defined as 𝑎∗(𝑥, 𝑦) and 𝑏∗(𝑥, 𝑦) respectively. To perform the conversion (1), (2), (3) and (4) are 

applied. 

 

[

𝑋(𝑥, 𝑦)

𝑌(𝑥, 𝑦)

𝑍(𝑥, 𝑦)
] = [

0.412453 0.357582 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

] [

𝑅(𝑥, 𝑦)

𝐺(𝑥, 𝑦)

𝐵(𝑥, 𝑦)
] (1) 

 

𝐿(𝑥, 𝑦) = {
116 ∙ (

𝑌(𝑥,𝑦)

𝑌0
)

1

3
− 16 ,

𝑌(𝑥,𝑦)

𝑌0
> 0.008856

903.3 ∙ (
𝑌(𝑥,𝑦)

𝑌0
)         , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                

 (2) 

 

𝑎∗(𝑥, 𝑦) = 500 ∙ [(
𝑋(𝑥,𝑦)

𝑋0
)

1

3
− (

𝑌(𝑥,𝑦)

𝑌0
)

1

3
] (3) 

 

𝑏∗(𝑥, 𝑦) = 200 ∙ [(
𝑌(𝑥,𝑦)

𝑌0
)

1

3
− (

𝑍(𝑥,𝑦)

𝑍0
)

1

3
] (4) 

 

where 𝑋0, 𝑌0, 𝑍0 tristimulus values of the reference white [16].   

 

Highlight filtering on a color image is applied only on the L component; the a∗  and b∗ components 

are not modified. The 𝐿(𝑥, 𝑦) image is then filtered with a 9x9 MG Gaussian mask and standard deviation 

(𝜎) of 2, which is obtained by (5). The image resulting from the Gaussian filtering process is the image 

𝐿𝑓(𝑥, 𝑦), which is obtained by (6). 

 

𝑀𝐺(𝑖 + 4, 𝑗 + 4) =
1

23.99
 ∑ ∑ 𝑒

−(
𝑖2+𝑗2

2𝜎2 )4
𝑗=−4

4
𝑖=−4  (5) 

 

𝐿𝑓(𝑥, 𝑦) =  𝐿(𝑥, 𝑦) ∗ 𝑀𝐺(𝑥, 𝑦) (6) 

 

Applying (7) you get 𝐿′(𝑥, 𝑦), which is the L component filtered with the enhancement filter.    

 

𝐿′(𝑥, 𝑦) =  2.5 ∙ 𝐿(𝑥, 𝑦) − 1.5 ∙ 𝐿𝑓(𝑥, 𝑦) (7) 

 

Finally, we return to the RGB color model but with the L component modified, expressed as 𝐿′(𝑥, 𝑦), 

obtaining in RGB color model a new image. The result of the enhancement filtering process is shown in Figure 

3(b). After applying the enhancement filter, a contrast enhancement is applied. Once the enhanced RGB image 

is obtained, its three primary color components are separated from the image. That is, component R expressed 

as 𝑅′(𝑥, 𝑦), component G expressed as 𝐺′(𝑥, 𝑦) and component B expressed as 𝐵′(𝑥, 𝑦). As can be seen in 

Figure 4, the most salient information regarding the bacilli can be found in R and G components of the enhanced 

RGB image.  
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(a) (b) 

 

Figure 3. Image enhancement process: (a) The original RGB image, (b) the enhanced RGB image 
 

 

  
(a) (b) 

 

  
(c) (d) 

 

Figure 4. (a) Enhanced RGB image with primary components 𝑅′(𝑥, 𝑦), 𝐺′(𝑥, 𝑦) and B′(𝑥, 𝑦) (b) Red 

component 𝑅′(𝑥, 𝑦), (c) Green component G′(𝑥, 𝑦), (d) Blue component B′(𝑥, 𝑦) 
 

 

The transformation functions shown in (8), (9) and (10) are then applied to each component making 

up enhanced image to highlight the bacilli present in the image. This is shown in Figure 5. 

𝐼𝑀1(𝑥, 𝑦) = {
1.25 ∙ 𝑅′(𝑥, 𝑦) , 0 ≤ 𝑅′(𝑥, 𝑦) ≤ 0.8
1                         , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

 

𝐼𝑀2(𝑥, 𝑦) = {
0                                , 0 ≤ 𝐺′(𝑥, 𝑦) < 0.3

2.5 ∙ 𝐺′(𝑥, 𝑦) − 0.75 , 0.3 ≤ 𝐺′(𝑥, 𝑦) ≤ 0.7
1                                 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (9) 

 

𝐼𝑀3(𝑥, 𝑦) = 1        (white image, Fig. 5d) (10) 

 

where 𝐼𝑀1(𝑥, 𝑦), 𝐼𝑀2(𝑥, 𝑦) and 𝐼𝑀3(𝑥, 𝑦), are the components R, G and B respectively. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

An algorithm for detection of Tuberculosis bacilli in Ziehl-Neelsen sputum smear ... (Christian del Carpio) 

2973 

  
(a) 

 

(b) 

  
(c) (d) 

 

Figure 5. (a) RGB image with primary components 𝐼𝑀1(𝑥, 𝑦), 𝐼𝑀2(𝑥, 𝑦) and 𝐼𝑀3(𝑥, 𝑦), (b) Red component 

𝐼𝑀1(𝑥, 𝑦), (c) Green component 𝐼𝑀2(𝑥, 𝑦), (d) Blue component 𝐼𝑀3(𝑥, 𝑦)=1 (white image) . 

 

 

2.4. Segmentation  

Once the image has been enhanced, we proceed to the segmentation process. In order to extract 

the objects of interest (because they are concentrated in the components mentioned above), the improved 

components R and G are subtracted as expressed in (11). The result of this operation is shown in Figure 6. 
 

𝐼𝑅(𝑥, 𝑦) = 1.1 ∙ 𝐼𝑀1(𝑥, 𝑦) − 𝐼𝑀2(𝑥, 𝑦) (11) 
 

In order to improve the display of all objects in the image, the dynamic range is reduced by applying 

(12) over the 𝐼𝑅(𝑥, 𝑦) image. The result is shown in Figure 7. 
 

𝐼𝑅1(𝑥, 𝑦) = log (1 + 𝐼𝑅(𝑥, 𝑦)) (12) 
 

 

 
 

Figure 6. Image obtained by the difference of 

𝐼𝑀1(𝑥, 𝑦) and 𝐼𝑀2(𝑥, 𝑦) 

 
 

Figure 7. Image 𝐼𝑅1(𝑥, 𝑦) 
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The image 𝐼𝑅1(𝑥, 𝑦) is filtered with a median filter [17] using a 5x5 window to standardize the image 

obtaining 𝐼𝑅2(𝑥, 𝑦). The result can be seen in Figure 8. As can be seen, the image has been segmented obtaining 

the objects of interest and some unwanted artifacts. 

 

 

 
 

Figure 8. Image 𝐼𝑅2(𝑥, 𝑦), result of applying median filtering to 𝐼𝑅1(𝑥, 𝑦) 

 

 

The image obtained is then subjected to a threshold process applying (13). The threshold is fixed and 

was obtained after performing multiple tests. Figure 9(a) shows an image with a color bar, where the objects 

of interest are taken with a threshold from 0.75. The result of the threshold is the 𝐼𝐵(𝑥, 𝑦) image shown in 

Figure 9(b). 

 

𝐼𝐵(𝑥, 𝑦) = {
1 , 𝐼𝑅2(𝑥, 𝑦) ≥ 0.75
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (13) 

 

 

  
(a) (b) 

 

Figure 9. a) Image Colormap 𝐼𝑅2(𝑥, 𝑦), b) Binary image 𝐼𝐵(𝑥, 𝑦) 

 

 

The tagging algorithm [18] is then applied to the 𝐼𝐵(𝑥, 𝑦) binary image in order to remove tags 

containing less than 40 pixels; this in order to remove objects that because of their size do not qualify 

to be bacilli. The result of this process is 𝐼𝐵1(𝑥, 𝑦). Likewise, in order to give solidity to the obtained objects, 

the morphological closing process [19] is applied with a structural element EE. This process is indicated 

in (14). 

 

𝐈𝐁𝟐 = (𝐈𝐁𝟏 ⊕ 𝐄𝐄) ⊝ 𝐄𝐄  

 

𝐄𝐄 = [
1 1 1
1 1 1
1 1 1

] (14) 
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where 𝐈𝐁𝟏 and 𝐈𝐁𝟐 constitute the matrices that represent the images 𝐼𝐵1(𝑥, 𝑦) and 𝐼𝐵2(𝑥, 𝑦) respectively. 

The symbols "⊕" and "⊝" represent the morphological operations of dilation and erosion respectively. 

The matrix obtained from this process is 𝐈𝐁𝟐 which represents the image 𝐼𝐵2(𝑥, 𝑦) and is shown in Figure 10. 

The labeling algorithm is applied to the image 𝐼𝐵2(𝑥, 𝑦), obtaining all the final objects to be able to determine 

which are possible bacilli. The image of the tagged objects is shown in Figure 11. 
 

 

 
 

Figure 10. Image 𝐼𝐵2(𝑥, 𝑦) 

 
 

Figure 11. Image of all tagged objects 
 

 

2.5. Descriptors calculation 

For the detection process of bacilli in images obtained by ZN bacilloscopy in the different methods, 

direct, pellet and dilute pellet, the detected objects were analyzed and the geometric and photometric 

descriptors were calculated.    

 

2.5.1. Geometric Descriptors 

Four geometric descriptors [20] were calculated for each object obtained from 𝐼𝐵2(𝑥, 𝑦). 

 

2.5.2. Area  

The area 𝐴𝑛 , of the nth object 𝑂𝑛(𝑥, 𝑦) belonging to the binary image 𝐼𝐵2(𝑥, 𝑦) is equal to the sum 

of the number of pixels corresponding to the object.   
 

𝐴𝑛 = ∑ ∑ 𝑂𝑛(𝑥, 𝑦)
𝑁𝑛−1
𝑦=0

𝑀𝑛−1
𝑥=0  (15) 

 

where 𝑀𝑛 and 𝑁𝑛 correspond to the number of rows and columns of the nth object respectively.   
 

2.5.3. Perimeter  

The perimeter 𝑃𝑛 , of the nth object 𝑂𝑛(𝑥, 𝑦) belonging to the binary image 𝐼𝐵2(𝑥, 𝑦) left, right, up or 

down (4-next-door). 
 

𝑃𝑛 = ∑ ∑ 𝑂𝑛(𝑥, 𝑦)
𝑁𝑛−1
𝑦=0 ,

𝑀𝑛−1
𝑥=0 ∀𝑂𝑛(𝑥, 𝑦)  ∈ 4 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟(𝑂𝑛(𝑥, 𝑦)) = 0 (16) 

 

2.5.4. Eccentricity  

The eccentricity 𝐸𝑛 , of an ellipse of the nth object 𝑂𝑛(𝑥, 𝑦) belonging to the binary image 𝐼𝐵2(𝑥, 𝑦) 

is equal. 
 

𝐸𝑛 = √1 −
𝑏𝑛

𝑎𝑛
 (17) 

 

where 𝑎𝑛 and 𝑏𝑛 are the size of the major and minor axis of object 𝑂𝑛(𝑥, 𝑦) respectively 

 

2.5.5. Solidity  

The solidity 𝑆𝑛, of the nth object 𝑂𝑛(𝑥, 𝑦) belonging to the binary image 𝐼𝐵2(𝑥, 𝑦) is obtained in 

the following way. 
 

𝑆𝑛 =
𝑃𝑛

𝐶𝑋𝑛
 (18) 

 

where  𝐶𝑋𝑛 is the convex area of the nth object. 
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2.5.6. Photometric Descriptors 

Six photometric descriptors [21] where calculated for each objet obtained from 𝐵2(𝑥, 𝑦)    
a. Percentile 35 in the red band (PR35n). 

b. Percentile 65 in the green band (PG65n). 

c. Standard deviation in the red band (STDR𝑛) 

d. Standard deviation in the green band (STDG𝑛) 

e. Standardized energy in the red band (ER𝑛). 

f. Standardized energy in the red band (𝐸𝐺𝑛). 

To obtain the a-th percentile (𝑃𝑒𝑎,𝑛) the histogram [22] of the n-th object 𝑂𝑛(𝑥, 𝑦) will be defined first. 
 

ℎ𝑛(𝑟𝑘) = 𝑚𝑘 (19) 
 

where 𝑟𝑘 is the k-th intensity level of the object and 𝑚𝑘 is the number of pixels in the object that has the 𝑟𝑘 

intensity level. 

Then the index for the desired percentile is obtained, being 𝑀𝑛 and 𝑁𝑛 number of rows and columns 

respectively of the nth object 𝑂𝑛(𝑥, 𝑦) that belongs to the image of interest.  The value of 𝑖𝑑𝑛  obtains 

the number of pixels of the desired percentile. 
 

𝑖𝑑𝑛 =
𝑎∙𝑀𝑛∙𝑁𝑛

100
,     𝑎 = 1,2, . . ,99 (20) 

 

Once the number of pixels for this percentile is obtained, the values of the histogram are added until the number 

of calculated pixels is reached.   
 

𝑖𝑑𝑛 ≤ min (∑ ℎ𝑛(𝑟𝑗)
𝑟𝑘
𝑗=0 ) , 𝑟𝑘 = 0,1,2 … ,255 (21) 

 

Therefore, in (22) the percentile a is obtained that is equal to 𝑟𝑘  that complies with (21). 
 

𝐼𝑛 = 𝑟𝑘    (22) 
 

2.6. Clasification of objects 

For the classification of the objects, a Support Vector Machine (SVM) was implemented. The SVM 

finds the hyperplane that maximizes the margin between the TB-positive and TB-negative classes in 

the characteristics space [23-25]. The SVM dimension used is 𝐾𝑝+1, where 𝐾𝑝 is the number of descriptors 

that the SVM input has for each preparation method. In this case, the dimension is the same for all preparation 

methods.  

The descriptors used are shown in Table 1 and are the same for all preparation methods. With these 

chosen descriptors the best results were obtained, both in sensitivity and specificity. The SVM input vectors 

corresponding to each object obtained by each preparation method are defined by (23), (24) and (25) for 

the direct method, pellet and diluted pellet respectively.   
 

𝐼𝑛1 = [𝐴𝑛1, 𝑃𝑛1, 𝐸𝑛1, 𝑆𝑛1, PR35n1, PG65n1, STDR𝑛1, STDG𝑛1, ER𝑛1, EG𝑛1]   (23) 
 

𝐼𝑛2 = [𝐴𝑛2, 𝑃𝑛2, 𝐸𝑛2, 𝑆𝑛2, PR35n2, PG65n2, STDR𝑛2, STDG𝑛2, ER𝑛2, EG𝑛2]   (24) 
 

𝐼𝑛3 = [𝐴𝑛3, 𝑃𝑛3, 𝐸𝑛3, 𝑆𝑛3, PR35n3, PG65n3, STDR𝑛3, STDG𝑛3, ER𝑛3, EG𝑛3]   (25) 
 

Table 1 shows the number of vectors used to train SVM for each preparation method, and the number 

of vectors for validation purposes. For the implementation of the SVM a kernel was applied, because the data 

were not linearly separable. For all preparation methods a grade 6 polynomial was used. In (26) and (27) 

the following operation is shown. 
 

𝐾𝑝(𝐼𝑛𝑝 , 𝑠𝑣𝑝) = (𝐼𝑛𝑝
𝑇 ∙ 𝑠𝑣𝑝 + 1 )

6
 (26) 

 

where 𝑠𝑣𝑝 is the SVM support vector for each p separation method.  
 

𝑦𝑛𝑝 = ∑ 𝛼𝑝 ∙ 𝐾𝑝(𝐼𝑛𝑝,  𝑠𝑣𝑝) + 𝑏 (27) 
 

where 𝛼𝑝 is the Lagrange multiplier and has the same dimensions as its corresponding support vector and b is 

the bias. Figures 12-14 show how SVM classifies objects in images from the different preparation methods. 
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Table 1. SVM configuration  
Descriptor / Method SVM Direct SVM Pellet SVM Diluted Pellet 

𝐴𝑛𝑝 x x x 

𝑃𝑛𝑝 x x x 

𝑒𝑛𝑝 x x x 

𝑆𝑛𝑝 x x x 

PR35np x x x 

PG65np x x x 

STDR𝑛𝑝 x x x 

STDG𝑛𝑝 x x x 

ER𝑛𝑝 x x x 

𝐸𝐺𝑛𝑝 x x x 

Kernel (𝐾𝑛𝑝) Polynomial order 6 Polynomial order 6 Polynomial order 6 

 

 

  
(a) (b) 

 

Figure 12. Classification at object level for the direct method 
 

 

  
(a) (b) 

 

Figure 13. Object level classification for the pellet method 
 
 

  
(a) (b) 

 

Figure 14. Object level classification for the diluted pellet method 
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3. RESULTS  

For the present work, 225 ZN paving images, 75 images by the direct method, 75 images by the pellet 

method and 75 images by the diluted pellet method were analyzed. All images were obtained from different 

patients. Sample preparation is a standardized process and this is indicated in [26]. In order to validate, 

we worked with more than 350 objects between bacilli and non-bacilli obtained from the different processed 

images. Table 2 shows the distribution of the data. 
 

 

Tabla 2. Data distribution 
Descriptor / Method Direct Pellet Diluted Pellet 

Data Total 769 751 735 

Training Data 538 526 515 

Descriptors 10 10 10 
Data Validation  231 225 220 

 

 

Sensitivity and specificity values were obtained from (28) and (29).      
 

𝑠𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑉𝑃

𝑉𝑃+𝐹𝑁
∙ 100       (28) 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑉𝑁

𝑉𝑁+𝐹𝑃
∙ 100       (29) 

 

where VP stands for True Positive and the correctly classified positive bacilli. Objects recognized by 

the specialist as bacilli and that match the software; VN stands for True Negative and are the correctly classified 

negative bacilli. Objects detected by the software as NO bacilli and coinciding with the specialist; FP stands 

for False Positive and are negative bacilli classified as positive. Objects that the software detects as bacilli and 

that are NOT bacilli; and FN that means False Negative that are the positive bacilli classified as negative. 

Bacilli that are not detected by the software as bacilli, but have been recognized and accepted by the specialist. 

Two medical technologists from the Tuberculosis Laboratory of the Universidad Peruana Cayetano 

Heredia, both with extensive experience in the preparation, analysis and diagnosis of TB, participated in 

the validation of the proposed method.  The specialists evaluated separately all the images that were submitted 

to the proposed algorithm (without knowing the previous results of the software).  

Tables 3-5 show the results obtained for sensitivity and specificity. Specialist No. 1 is denoted as E1, 

specialist No. 2 as E2, E1 or E2 as E3 and E1 and E2 as E4. Figure 15 shows the best results obtained for 

sensitivity and specificity from Tables 3-5.   
 

 

Table 3. Sensitivity and specificity analysis 

by the direct method 
Analysis / 

Specialist 
E1 E2 E3 E4 

Sensitivity 92.55% 93.25% 92.17% 93.67% 
Specificity 84.29% 88.24% 89.23% 83.56% 

 

Table 4. Sensitivity and specificity analysis 

by pellet method 
Analysis / 

Specialist 
E1 E2 E3 E4 

Sensitivity 91.14 91.08 90.15 92.13 
Specificity 80.49 79.52 82.58 77.71 

 

 

 

Table 5. Sensitivity and specificity analysis by diluted pellet method 
Analysis / 
Specialist 

E1 E2 E3 E4 

Sensitivity 92.31 92.31 91.82 92.81 

Specificity 81.25 81.25 83.61 79.10 
 

 

 

 
 

Figure 15. Sensitivity and specificity analisys by object 
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It must be taken into account that the images obtained in any of the three preparation methods must 

be well focused so as not to cause error. Likewise, it is important that the samples are correctly prepared, 

that is to say, that there is no leakage of the fuchsin dye on the image, as well as the bacilli must be well marked 

with this dye to improve the sensitivity and specificity, and also avoid that a bacillus is split and can affect 

the counting of these.   

For the description of the objects considered as bacilli, both shape and photometric descriptors were 

taken into account, and specifically that comply with fuchsin staining, because of this the 35th and 65th 

percentiles were used in the R and G components of the image respectively, given that component B was 

set to 1. The best result in sensitivity is obtained in the direct method, however, all three methods exceed 90% 

sensitivity. Likewise, the best specificity result is achieved in direct method, almost 90%, and the lowest index 

in pellet method. This is because there are objects that without being bacilli can be marked by fuchsin product 

of the sample preparation process. The most common method of preparation, in any health center, 

is the direct method.   
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