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 The purpose of this study is to investigate performances of some of the data 

mining approaches while understanding desire and intention to participate in 

virtual communities and its antecedents. A research model has been 

developed following the literature review and the model was tested 

afterwards. In research part of the study, some of the data mining approaches 

as JRip, Part, OneR Method, Multilayer Perceptron (Neural Networks), 

Bayesian Networks have been used. Based on the analysis conducted it has 

been found out that Multilayer Neural Network had the best correct 

classification rate and lowest RMSE.  
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1. INTRODUCTION  

As virtual community concept emerged during time, new definitions of the term found place in the 

literature. Porter proposes a virtual community definition that, a virtual community is an aggregation of 

individuals or business partners who interact around a shared interest, where the interaction is at least 

partially supported and/or mediated by technology and guided by some protocols or norms [1]. 

Plant approaches the term from a similar perspective defining a virtual community as a collective group that 

come together either temporarily or permanently through an electronic medium to enable the interaction of 

entities, individuals or organizations in a common problem or interest space [2]. In addition to these, 

Rheingold defines a virtual community as social aggregations that emerge from the Internet when enough 

people carry on those public discussions long enough, with sufficient human feeling to form webs of personal 

relationships in cyberspace [3]. 

The purpose of this study is to investigate performances of some of the data mining approaches while 

understanding desire and intention to participate in virtual communities and the factors affecting it. For this 

purpose a model has been developed with the focus on desire and intention to participate to virtual 

communities and its antecedents. Later following the data gathering phase and pre-processing of the data 

several data mining approaches have been applied to the data. Some part of the data is used for training 

purposes whereas remaining is used for testing the model which has been formed following the literature 

review. Consequently in addition to the studies in the scientific body of knowledge a collaborative and 

contributive data mining approach is applied to understand desire and intention to participate in 

virtual communities. 
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2. RESEARCH METHOD  

Data mining can be defined as the process of extracting hidden patterns from large chunks of data. 

In doing this knowledge discovery, prediction or forecasting can be in the focus of data mining. 

While knowledge discovery provides us explicit information about the characteristics of the data set 

predictive modeling provides predictions of future events. As stated by Simoudis, data mining is the process 

of extracting valid, previously unknown, comprehensible and actionable information from large databases 

and using it to make business decisions [4]. Data mining borrows approaches from several disciplines as 

statistics, mathematics or computer science in order to find useful patterns and knowledge from large data 

sets. As it is indicated in Shearer’s crisp-dm model, a data mining process is composed of business 

understanding, data understanding, data preparation, model building, testing/evaluation and deployment 

processes. In the following sections some of the data mining approaches used in analyzing the data set will be 

introduced [5]. 

 

2.1.  Data gathering and processing 

As suggested in literature over 385 observations (425 in our sample in this study) has been found 

sufficient for the sample size values with an error of 5% and a confidence level of 95% (survey monkey 

site-sample size calculator). In literature used formula to calculate this has been n= t2 x (p x q)/e2  where n 

refers to sample size, p refers to proportion, percentage or presence of the study characteristics (in literature it 

is suggested that when we have no prior values for the proportions to be estimated, we can use p- and 

q-values as 50%.) q=1-p, e refers to margin of error; t = 1.96 (with 95% confidence level). Based on that, 

n = 1.962 x 0.5 x 0.5 / 0.052 sample size has been found 384.16 and rounded to 385 [6-7]. 
Scales used in the study is given in detail. Positive anticipated emotions refer to the pre-factuals 

hypothesized to influence desires to perform a behavior which can be in the form of positive anticipated 

emotions or negative anticipated emotions and it’s likely to expect its influence on virtual community 

participation and desire and intention to participate in virtual communities [8]. In the literature, it is pointed 

out that in general people are in a tendency to expect some return when they share their knowledge. As it is 

defined by Chiu et al., norm of reciprocity refers to knowledge exchanges that are mutual and perceived by 

the parties as fair and one of the important factors that leads to knowledge sharing behavior [9].  

Perceived usefulness refers to the degree to which a person believes that using a particular system 

would enhance his or her performance [10, 11]. As it is indicated by Porter, in the technology acceptance 

model, perceived usefulness and perceived ease of use are the beliefs that are presumed to influence attitudes 

toward new technology [12]. As it is pointed out in Fishbein and Ajzen’s theory of reasoned action, attitudes 

are formed as a result of the beliefs about the outcomes of performing that act and expected outcomes. If the 

outcome of performing that behavior seems beneficial to the individual, he/she may participate in that 

particular behavior [13, 14].  

Early definitions of social comparison theory date back to 1954s that started with Festinger’s social 

comparison theory. As stated in the literature according to social comparison theory, there is a drive within 

individuals to look to outside images in order to evaluate their own opinions and abilities in the sense that it 

mainly focuses on explaining and understanding tendencies of individuals in evaluating and comparing their 

own opinions and desires with others which may lead to an self enhancement in individuals’ self images. 

As it is pointed out in literature desires provide the motivation to decide in favor of acting as part of a virtual 

community. Therefore desire construct has been measured with the help of questions adapted from 

Dholokia’s respective scale [15].  

As it is defined by Dholokia, We-Intentions construct used in the model refers to the intentions to 

participate ingether as a group which is to be a function of both individual (i.e., attitudes, perceived 

behavioral control, positive, and negative anticipated emotions) and social determinants [15]. Desire and 

intention to participate in virtual communities refers to the merge of we-intention and desires of Dholakia 

where desires provide the motivation to decide in favor of acting as part of a virtual community and we 

intentions stand for the intentions to participate together as a group, to be a function of both individual 

(i.e., attitudes, perceived behavioral control, positive, and negative anticipated emotions) and social 

determinants (i.e., subjective norms, group norms, and social identity) [15]. Respective scales have been 

borrowed empirically from the studies as shown in Table 1. 
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Table 1. Scales used in the study 
Construct Adapted From 

Positive anticipated emotions Bagozzi, 2002 [8] 

Norm of reciprocity Chiu, 2006 [9] 

Perceived Usefulness Shin, 2008 [10] 

Predisposition to Virtual Community Usage Bagozzi, 2002 [8] 

Social Comparison Chen, 2010 [12] 

*Desire And Intention to Participate In Virtual 

Com. Desires We-Intention 

Dholakia, 2004 [15] 

Dholakia, 2004 [15] 

Dholakia, 2004 [15] 

*Desire and Intention to Participate in Virtual Communities is the combination 

of Desires and We Intention Scales 

 

 

2.2.  Data mining methods 

As part of the research conducted several data mining approaches have been applied to the data set. 

Data mining methods can be used more accurately with data preprocessing approaches [16]. Such as 

normalization of the data, discretization the conutinues data and etc. Brief descriptions of the methods that 

have been used as follow. 

1) JRip: JRip implements a propositional rule learner, “Repeated Incremental Pruning to Produce Error 

Reduction” (RIPPER), as proposed by Cohen, JRip is a rule learner alike in principle to the rule learner 

Ripper [17]. JRip implements a propositional rule learner, “Repeated Incremental Pruning to Produce 

Error Reduction” (RIPPER), as proposed by Cohen, JRip is a rule learner alike in principle to the rule 

learner Ripper [17]. RIPPER rule learning algorithm is an extended version of learning algorithm IREP 

(Incrementa1 Reduced Error Pruning). It constructs a rule set in which all positive examples are 

covered, and its algorithm performs efficiently on large, noisy datasets. Before building a rule, 

the current set of training examples are partitioned into two subsets, a growing set (usual1y 2/3) and a 

pruning set (usual1y 1/3). The rule is constructed from examples in the growing set. The rule set begins 

with an empty rule set and rules are added incrementally to the rule set until no negative examples are 

covered. After growing a rule from the growing set, condition is deleted from the rule in order to 

improve the performance of the rule set on the pruning examples [18]. 

2) PART: The PART algorithm combines two common data mining strategies; the divide-and-conquer 

strategy for decision tree learning with the separate-and-conquer strategy for rule learning. The tree 

building algorithm splits a set of examples recursively into a partial tree. The first step chooses a test 

and divides the examples into subsets. PART makes this choice in exactly the same way as C4.5. 

Then the subsets are expanded in order of their average entropy starting with the smallest. The reason 

for this is that subsequent subsets will most likely not end up being expanded and the subset with low 

average entropy is more likely to result in a small sub tree and therefore produce a more general 

rule [19].  

3) OneR: OneR, generates a one-level decision tree that is expressed in the form of a set of rules that all 

test one particular attribute. OneR is a method that often comes up with quite good rules for 

characterizing the structure in data [20]. Pseudo code for 1R is as follow. 

For each attribute, 

 For each value of that attribute, make a rule as follows: 

  Count how often each class appears 

  Find the most frequent class 

  Make the rule assign that class to this attribute-value. 

 Calculate the error rate of the rules. 

Choose the rules with the smallest error rates [20]. 

4) Multilayer Perceptron: A Multilayer Perceptron is a version of the original perceptron model proposed 

by Rosenblatt in the 1950s and considered as a type of neural networks (Rosenblatt, 1958). 

A perceptron (artificial neuron)  is a function of several input perceptrons which is formed as a 

combination of input weights to the hidden layer perceptrons. As stated by Ramchoun in literature 

multilayer perceptron has one or more hidden layers between its input and output layers, the neurons are 

organized in layers, the connections are always directed from input layers to output layers and the 

neurons in the same layer are not interconnected [21]. In this approach hidden layer is a function of the 

nodes in the previous layer, and the output nodes are a function of the nodes in the hidden layer. 

5) Bayesian Network: There are no deterministic rules which allow to identify a subscriber as a risk 

indicator. Graphical models such as Bayesian networks supply a general framework for dealing with 

uncertainly in a probabilistic setting and thus are well suited to tackle the problem of prediction. Every 

graph of a Bayesian network codes a class of probability distributions. The nodes of that graph comply 
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with the variables of the problem domain. Arrows between nodes denote allowed (causal) relations 

between the variables. These dependencies are quantified by conditional distributions for every node 

given its parents [22]. A Bayesian network B over a set of variables U is a network structure Bs, which 

is directed acyclic graph (DAG) over U and set of probability tables Bp={p(u|pa(u))|u Є U} where 

pa(u) is the set of parents of u in Bs. A Bayesian network represents probability distributions [23, 24]. 

 

 

3. FINDINGS 

Reliability of the constructs have been re-assessed and re-evaluated considering suggested lower 

limit of Cronbach’s alpha in literature. As it is shown in Table 2 with the sample size of 425 it has been seen 

that all Cronbach alpha values for the respective constructs have a value of higher than .70, in other words all 

the constructs used in the research model are statistically reliable and can be regarded as reliable constructs 

of the research model [25]. From this reason,  

 

 

Table 2. Reliability measures of the scales 
 Items Cronbach Alpha 

 Positive anticipated emotions 7 ,918 

Norm of reciprocity 2 ,798 

Perceived Usefulness 3 ,886 

Predisposition to Virtual Community Usage 4 ,857 

Social Comparison 3 ,869 

*Desire and Intention to Participate Virtual Communities 5 ,921 

 

 

In this study, benchmarking of the algorithms of JRip, Part, OneR Method, Multilayer Perceptron, 

Bayesian Networks have been performed. In testing the research model with each of the data mining 

approaches 66 percent of the data has been used for the training whereas remaining part of the data set has 

been used for the testing of the model. Among different data mining approaches JRip had the values 

(RMSE=0.2913; Precision=N/A; Correct Classification Rate=90.90%; Incorrect Classification Rate=9.09; 

True Positive Rate=0.909 and False Positive Rate=0.909).  

Part had the values (RMSE=0.264; Precision=0.923; Correct Classification Rate=91.60%; Incorrect 

Classification Rate=8.39; True Positive Rate=0.916 and False Positive Rate=0.839). OneR had the values 

(RMSE=0.3015; Precision=N/A; Correct Classification Rate=90.90%; Incorrect Classification Rate=9.09; 

True Positive Rate=0.909 and False Positive Rate=0.909).  

Multilayer Perceptron had the values (RMSE=0.2476; Precision=0.921; Correct Classification 

Rate=93.007%; Incorrect Classification Rate=6.99; True Positive Rate=0.930 and False Positive Rate=0.561) 

and finally Bayesian Networks had the values (RMSE=0.2873; Precision=0.876; Correct Classification 

Rate=89.51%; Incorrect Classification Rate=10.49; True Positive Rate=0.895 and False Positive 

Rate=0.703). Precision values of JRip and OneR method could not been calculated since proportion of 

instances truly classified of a class divided by the total instances classified in that class have been calculated 

undefined in the confusion matrix. Among all the algorithms, multilayer perceptron had the most correct 

classification rate with 93.007 percent, a good true positive rate of 0.930 and a precision 0.921. Part method 

had a correct classification rate of 91.60 percent, true positive rate of 0.916 and a precision value of 0.923. 

Multilayer perceptron had the lowest RMSE with a value of 0.24. Comparison of data mining methods used 

can be seen in Table 3. 

 

 
Table 3. Comparison of data mining methods used 

Method RMSE Precision 
Correctly 

Classified % 

Incorrectly 

Classified % 
True Positive Rate 

False Positive 

Rate 

JRip 0.29 N/A 90.90 9,09 0,90 0,90 

Part 0.26 0,92 91.60 8,39 0,91 0,83 

OneR Method 0.30 N/A 90.90 9,09 0,90 0,90 

Multilayer Perceptron 0.24 0,92 93.00 6,99 0,93 0,56 

Bayesian Networks 0.28 0,87 89.51 10,49 0,89 0,70 

 
 

4. DISCUSSION AND CONCLUSION 

In this study, we investigated the factors behind desire and intention to participate in virtual 

communities following an intensive literature review. This is later followed with the model formation and 

applying the data mining techniques as suggested in literature. In the analysis part of the study we examined 
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relationship of positive anticipated emotions, norm of reciprocity, social comparison, predisposition towards 

virtual community usage and perceived usefulness with desire and intention to participate in virtual 

communities. In doing so we trained the model using 66 percent of the data of training of the model whereas 

remaining part for the testing of the model for each approach.  

Data mining can be defined as the process of extracting hidden patterns from large chunks of data. 

In doing this knowledge discovery, prediction or forecasting can be in the focus of data mining. Jrip, part, 

oner method, Multilayer Perceptron (Neural Networks), and Bayesian Networks have been chosen as the data 

mining techniques in order to examine desire and intention to participate in virtual communities for this 

purpose. Among them JRip is a rule learner alike in principle to the rule learner Ripper [17]. The part 

algorithm combines two common data mining strategies; the divide and conquer strategy for decision tree 

learning with the separate and conquer strategy for rule learning. Oner generates a one level decision tree that 

is expressed in the form of a set of rules that all test one particular attribute. A Multilayer Perceptron is a 

version of the original perceptron model proposed by Rosenblatt in the 1950s and considered as a type of 

neural networks [26]. A perceptron (artificial neuron) is a function of several input perceptrons which is 

formed as a combination of input weights to the hidden layer perceptrons which lead them to the output 

layer. Finaly graphical models such as bayesian networks supply a general framework for dealing with 

uncertainly in a probabilistic setting and thus are well suited to tackle the problem of prediction. 

In this study, we have met our objectives of evaluating and investigating the performances of different 

data mining techniques for the data set that is being used to understand desire and intention to participate in 

virtual communities. In addition to the studies in the scientific body of knowledge a collaborative and 

contributive data mining approach is applied to understand desire and intention to participate in virtual 

communities. Based on the results, multilayer perceptron had the most correct classification rate with 93.007 

percent, a good true positive rate of 0.930 and a precision 0.921. Part method had a correct classification rate 

of 91.60 percent, true positive rate of 0.916 and a precision value of 0.923. Multilayer perceptron had the 

lowest RMSE with a value of 0.24. Based on the high correct classification rate and low RMSE measure, 

multilayer perceptron (neural network) can be considered as an effective method and can be used in 

understanding desire and intention to participate in virtual communities and its antecedents.   
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