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 This paper presents the paddy field classification model using the approach 

based on periodic plant life cycle events and how these elevations in climate 

as well as habitat factors, such as elevation. The data used are MODIS-Terra 

two tiles of H28v09 and H29v09 of 2016, consist of 46 series of 8-daily data, 

with 500 meter resolution in Java region. The paddy field classification 

method based on the phenological model is done by Maximum Likelihood on 

the transformed annual multi-temporal image of the reflectance data, index 

data, and the combination of reflectance and index data. The results of the 

study showed that, with the reference of the Paddy Field Map from the 

Ministry of Agriculture (MoA), the overall accuracies of the paddy field 

classification results using the combination of reflectance and index data 

provide the highest (85.4%) among the reflectance data (83.5%) and index 

data (81.7%). The accuracy levels were varied; these depend on the slope and 

the types of paddy fields. Paddy fields on the slopes of 0-2% could be well 

identified by MODIS-Terra data, whereas it was difficult to identify the 

paddy fields on the slope >2%. Rain-fed lowland paddy field type has a 

lower user accuracy than irrigated paddy fields. This study also performed 

correlation (r2) between the analysis results and the statistical data based on 

district and provincial boundaries were >0.85 and >0.99 respectively. These 

correlations were much higher than the previous study results, which reached 

0.49-0.65 (hilly-flat areas of county-level), and 0.80-0.88 (hilly-flat areas of 

provincial level) for China, and reached 0.44 for Indonesia. 
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1. INTRODUCTION  

Indonesia with a population of 258.7 million people [1] faces major challenge in providing the food 

of its population. Policies on food resilience and food independence are the main issues and are the main 

focus of agricultural development. Increasing the need and the independence of food and employment in 

order to earn a decent income for access to food are the two main components in the realization of food 

security [2]. Rice is one of the main supports in Indonesia's food security. Monitoring the extent of paddy 

field, in order to improve the accuracy of food planning and self-sufficiency requires the availability of 

regular and accurate data. 

Regular data availability to monitor paddy fields using satellite imagery, such as Landsat, SPOT, 

and large-scale satellite image has been widely used because of the positive role in monitoring. Satellite 

images recorded with very high temporal resolution, although low spatial resolution such as Moderate 

Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra Satellite shooting can help analyse paddy 
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field monitoring faster than Landsat, SPOT, and other large-scale satellites [3], [4]. Terra/Aqua MODIS data 

are satellite images that have become public domain, have the spatial resolution of 250 metres, 500 metres, 

and 1 km with four recording times per day at the same location on earth [3]. However, the geographic 

condition of Indonesia in the tropics reduces the availability of MODIS image quality because the territory of 

Indonesia is covered by MODIS image which is often covered by clouds and haze. 

Many researchers have developed cloud extraction techniques from various satellite imagery [5], 

developing Mosaic Pixel Based for Landsat data [6], and Mosaic Tile Based of Landsat-8 to obtain minimal 

cloud cover [7]. The University of Maryland has performed time-series transformation of MODIS and 

Landsat data in Congo Basin [8], Landsat data from 1985 to 2012 in Eastern Europe’s [9]. Image 

transformation is done by histogram-based metrics approach, such as average, and by sequential metric 

approach [8]-[10].  

The collaborations among LAPAN, Ministry of Environment and Forestry (MEF), and World 

Resources Institute (WRI) have tried to transform time-series images with MODIS-Terra and Landsat-8 

OLI data. The data used are MODIS from 2000 to 2017, and Landsat from 2015 to 2017. The experiment 

was conducted with histogram-based metrics approach, such as average, and time-sequential metrics 

approach, such as regression. Data time-series level used is single image transformation, annual image 

transformation (metric level-1), and inter-annual image transformation (metric level-2). The results show that 

image transformation can be used to identify changes in forest coverage, without having to analyse individual  

change overlays [11]. 

The development of multi-temporal image is still conventionally done, is by analyzing annual data 

individually based on reflectance, and then compared with the annual data in different time to obtain the 

phenomenon of land use change. Trend or land use change analysis using these conventional methods takes 

longer and requires specific application skills. 

The use of the image transformation approach to analysing paddy field mapping has begun to be 

used evolutively. In the first generation, paddy field mapping was done with the use of category one 

algorithm, such as data reflectance and image statistic-based approaches. The next development emerged as 

the second generation using vegetation index and enhanced image statistic-based approaches. In the third 

generation development, the vegetation index or RADAR back-scatter-based temporal analysis is used [12]. 

Recent developments began using the phenological of paddy through remote sensing recognition of key 

growth approach phases [13]-[16].  

A phenological model is an approach based on periodic plant life cycle events, and how these are 

influenced by seasonal and inter-annual variations in climate, as well as habitat factors, such as elevation. 

Variables used for paddy field classification were developed from data reflectance, Normalized Difference 

Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) [17], [16], [14]. Normalised Difference 

Water Index (NDWI) [18]-[20], and Land Surface Water Index (LSWI) [17], [19]. The use of vegetation 

indices (e.g. NDVI, EVI, LSWI, NDWI) make the accuracy of land cover/use increased compared with the 

original reflectance [21], [22]. 

Phases of data used were developed from single image in early growing season before transplanting 

(Fang in 1998), multi-images from seedling and ripening stages [23], multi images in growing season [24], 

multi images in transplanting and tillering stages [25], all available images [26], and multi images in early 

rice growing season [27]. 

Xiangming Xiao (2005) had studied the paddy fields in South and Southeast Asia using multi-

temporal MODIS images. He had mapped for 13 South and South East Asian countries with a MODIS 

500-meter spatial resolution over 8-day data in 2002. Phenological models were used in the study. Paddy rice 

fields were characterised by an initial period of flooding and transplanting, during which a mixture of surface 

water and rice seedlings exists. He applied a paddy field mapping algorithm that uses a time-series of 

MODIS-derived vegetation indices to identify the initial period of flooding and transplanting in paddy fields, 

based on the increased surface moisture. The resultant MODIS-derived paddy field map was compared to 

national agricultural statistical data at national and sub national levels. The results show a similarity with the 

location of the paddy field as a whole, but there are variations in some of the locations on the topic. Although 

the results still need to be done further research, the method and use of MODIS data provide 

potential [16], [15], [14].  

From the various developments of the above research, paddy field mapping or classification using 

phenological approach resulting from image transformation with the combination of reflectance and MODIS-

Terra annual multi-temporal image index has not been done yet. The success of finding fast, precise and 

accurate procedures to assist in monitoring a land area and rice production will greatly assist in the planning 

and implementation of food resilience and independence programs [28], [2].  

The Java Island was selected as the study area. This is the most populous island with 146,675,400 

inhabitants, or 56.7% of the Indonesia total population of 258,704,900 in 2016. This island is a buffer area of 
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rice production with a production capacity of 38,970,026 tons (51.7%) of all rice production in Indonesia 

(75,397,841 tons) by 2015. The area of paddy fields in Java island is decreasing from 3.444.283 ha (2012) to 

3.231.680 ha (2013), then 3.248.394 ha (2014), then 3.223.502 ha (2015), and 3,222,347 (2016) [29]. 

This island is the most dynamic island among large islands in Indonesia, due to population density and rapid 

development of the region [1]. For that, the existence of a good monitoring tool becomes more necessary. 

This main objective of this study is to test the paddy field classification by using MODIS-Terra 

multi-temporal image with a combination of reflectance (Red, NIR, SWIR-1) and index (NDVI, NOAI), 

based on phenological approach. This research is different from what has been done by Xiangming Xiao 

(2005), he only uses parameter index (NDVI, EVI, and NDWI). The similarity with Xiao Xiangming's 

research is the use of category four that is phenological-based models through remote sensing recognition of 

key growth phases with the annual period. The phenology of rice plant in Java Island, characterized by a) at 

the beginning of planting always flooded with water, b) existence of up and down trend in vegetation index 

and open index area, and c) change of dynamic land cover every year, water phase, vegetation and fallow 

land is shown by the variance of reflectance and index values. 

 

 

2. DATA AND METHODS  

2.1. Data 

Primary data used in this research are the 8-day's reflectance of MODIS-Terra of 2016, with pixel 

resolution 500 meter of data from NASA's Land Processes Distributed Active Archive Centre (LP DAAC). 

This data consists of 46 series data of paths H28v09 and H29v09 of Java Island, covers band Red, NIR, and 

SWIR-1. While the two types of secondary data from the Ministry of Agriculture (MoA) were used, in the 

form of Paddy Field Map in 2012 as shown in Figure 1 and paddy field area base on district and province 

statistical data report in 2015. The paddy field map obtained from the delineation of high-resolution satellite 

imagery, but the annual statistical report from field estimation.  

 

  

 
 

Figure 1. Map of Paddy Field on Java Island in 2012 

Source: Pusdatin field data of the Ministry of Agriculture 

 

 

2.2.  Methods 
2.2.1. Image classification 

The method used in paddy field mapping for this study is an analysis of annual multi-temporal 

imagery with a phenological approach. The analysis process includes two stages: a) the steps to extract the 

8-day’s MODIS data into multi-temporal feature information image, performed using image transformation, 

and b) the step to classify the transformed multi-temporal feature image with the Maximum Likelihood 

Classification (MLC) approach [30]. The pre-processing of MODIS image is executed before a multi-

temporal transformation, which includes cloud masking, time-series filtering, and interpolation of blank data 

due to the cloud. Pre-processing is done to minimize the image of the cloud cover [31], [32]. 

Diagrammatically, the illustration of the paddy field classification model with a phenological model using 

MODIS-Terra multi-temporal image transformation is illustrated in Figure 2. 
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Figure 2. Illustrative diagram of paddy field classification model with phenological approach using the 

MODIS-Terra multitemporal image transformation 

 

 

2.2.2. Image transformation 

There are three types of reflectance images with the MODIS-Terra multi-temporal image 

transformation processed in this study, those are three reflectance images of SWIR-1, NIR, and Red; and two 

index images, namely Normalized Difference Vegetation Index (NDVI), and Normalized Open Area Index 

(NOAI), with the following formulas. The selection of index formula that is the minimum of reflectance of 

NIR and the minimum reflectance SWIR-1 done to highlight paddy field when flooded at the time of 

planting. The ups and downs of NDVI indicate the phenology that during the rice growing period, the NDVI 

value will increase during flooding to the vegetative stage, while at the maturation stage of the paddy, the 

value of NDVI will decrease. 
 

Red = Red (1) 

  

NIR = NIR  (2) 

  

SWIR_1 = SWIR_1 (3) 

  

NDVI = (NIR - Red) /( NIR + Red)  (4) 

  

NOAI = (SWIR_1 - NIR)/( SWIR_1 + NIR)  (5) 
 

where SWIR_1, NIR and red are reflectance in shortwave infrared 1, near infrared and red, respectively. 

The three reflectance images and two index images are then transformed by ten algorithms. 

The result of a multi-temporal image transformation in the form of the new image is called metric image. 

An extraction algorithm for obtaining metric image can be calculated based on the statistic value, regardless 

of recording time or with respect to recording time sequence. Image metric is an image (feature) that contains 

information in accordance with the needs of the application. There are ten types of algorithm formula to 

obtain image feature metric, that is: 

1) Average all clear pixels  

 

 ̅ 
    

 
 ∑   

        

  
  (6) 

 

2) Deviation standard all clear pixels 

 

   
    

    
 ∑   

          ̅       

  
    (7) 

MODIS-Terra 8-day reflectance data of H28v09 and H29v09 of 2016

Cloud Masking Time Series Filtering Interpolation of Cloud Cover

NDVI, NOAIRED, NIR, SWIR-1

TRANSFORMATION

1) average all clear pixels, 2) deviation standard all clear pixels, 3) 

minimum of all clear pixels, 4) maximum of all clear pixels, 5) average of 

70% clear pixels, 6) deviation standard of 70% clear pixels, 7) minimum 

of 70% clear pixels, 8) maximum of 70% clear pixels, 9) amplitude up, 

and 10) amplitude down.

Sampling for MLC Map of Paddy Field of Java 

Island of 2012

Maximum Likelihood 

Classification Final MODIS image of Paddy 

Field based on Phenology 
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3)  Minimum of all clear pixels 
 

              (8) 

 

4) Maximum of all clear pixels 

 

                (9) 

 

5)  An average of 70% clear pixels 

 

  ̅ 
   

 
 ∑       

           

      
  (10) 

 

6) A deviation standard of 70% clear pixels 

 

  
   

    
 ∑               

     
        

      
    (11) 

 

7)  Minimum of 70% clear pixels 

 

                 (12) 

 

8) Maximum of 70% clear pixels 

 

                 (13) 

 

9)  Amplitude up 

 

         (    
)                    (14) 

                                             

 

10) Amplitude down 

 

           (      
)                   (15) 

                                               

 

where x    average  x i the value of the ith sample; 〖sx〗_i=the value of the ith sample after being sorted 

from small to large; n=number of samples  δ=deviation standard;  

 

 

 
Figure 3. Feature transformation algorithm metrics of statistics based 

 

 

However, in this study only feature metric algorithm correlated with paddy field growth phenology 

in Java are selected, that is 1) average of 70% clear pixels, 2) standard deviation of 70% clear pixels, 
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3) minimum of 70% clear pixels, 4) maximum of 70% clear pixels, 5) amplitude up, and 6) amplitude down. 

The process of image transformation and its algorithmic representation is shown in Figure 3 and Figure 4. 

The sample selection of paddy field classification for MLC was done on 30 multi-temporal reflectance image 

transformation results (metric) which refer to the Paddy Field Map of Java Island of 2012 obtained from the 

MoA. These 30 metrics represent the multiplication of 3 reflectance images, 2 index images, and 6 feature 

metric algorithms.  

The reflectance image of band Red, NIR, and SWIR-1 are classified by MLC to obtain the 

distribution of paddy (rice field) and non-paddy (non-rice field) field. While the index images of NDVI and 

NOAI are also classified with MLC to obtain the distribution of paddy field and non-paddy field. 

The combination of reflectance images of band Red, NIR, SWIR-1 and the index images of NDVI and NOAI 

are also classified with MLC to obtain the distribution of paddy field and non-paddy field. The results of the 

three classifications with the input of metric reflectance image, metric index image, and also the combination 

of reflectance image and index image were calculated by its categories and compared its accuracy with the 

reference of Paddy Field Map of Java Island in 2012 from the MoA. 

 

 

 
 

Figure 4. Transformation image of multi-temporal MODIS-Terra  

 

 

3. RESULTS AND DISCUSSIONS  

3.1.  Analysis of the image transformation result 

There are several examples of the annual metric reflectance image and the annual metric index 

image of MODIS-Terra multi-temporal image transformation results in 2016. From the RGB color composite 

of the transformed reflectance image analysis in Figure 5 it is known that the blue in Figure 5(a) shows the 

dominance of the water content for a year in the multi-temporal image. While the blue in Figure 5(b) shows 

the dominance of paddy fields when inundated in the multi-temporal image. While from the analysis the 

transformed index image in Figure 5(c), it is known that the green shows the increase of NOAI index, while 

the red value indicates the decrease of NOAI index value, and the yellow indicates the rising and the falling 

value at different locations. From the Image in Figure 5(d) shows that the red indicates a high variation in 

NDVI index value, which means that land cover changes in one-year intervals are likely caused by the 

changes in land cover during paddy cultivation. 

The result of classification of the reflectance image using bands Red, NIR, and SWIR-1 by MLC to 

obtain the distribution of paddy field and non-paddy field is shown in The Image in Figure 6(a). The result of 

classification with the index image input of NDVI and NOAI is presented in The Image in Figure 6(b). 

While the classification result with the combination of image reflectance band Red, NIR, SWIR-1 and NDVI 

and NOAI index images is presented in The Image in Figure 6(c). 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 5. (a) RGB, Composite of Metrics Image, Note: Red is average of SWIR-1 of 70 % of cloud-free data; 

Green is an average of NIR of 70 % of cloud-free data; Blue is average of Red of 70 percent of cloud-free 

data. The blue color shows the dominance of water for a year, (b) RGB, Composite of Metrics Image, Note: 

Red is minimum of SWIR-1 of 70 % of cloud-free data; Green is a minimum of NIR of 70 % of cloud-free 

data; Blue is minimum of Red of 70 % cloud-free data. The blue color shows the inundated of paddy field, 

(c) RGB, Composite of Metrics Image, Note: Red is NOAI of a maximum of amplitude up; Green is NOAI 

of maximum amplitude down. The green color indicates an increase of NOAI, while the red value indicates 

the decrease of NOAI, the yellow color indicates both, (d) RGB, Composite of Metrics Image, Note: Red is 

the standard deviation of NDVI; Green is the average 70% of NDVI. Red color indicates a high variation in 

NDVI values, indicating a change in land cover within 1-year intervals that may be caused by changes in 

land cover during paddy cultivation 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 

Figure 6. (a) The Result of Classification using bands Red, NIR, and SWIR-1, Note: input the reflectance 

images of bands Red, NIR, and SWIR-1, (b) The Result of Classification of index image input of NDVI and 

NOAI, Note: input the index images of NDVI and NOAI, (c) The Result of Classification with the 

combination of image reflectance bands Red, NIR, SWIR-1 and NDVI and NOAI index images, Note: input 

the combination of reflectance images of Red, NIR, SWIR-1, and the index images of NDVI and NOAI 

 

 

3.2.  Paddy field area and accuracy assessment 

The three classified images with MLC approach were then calculated by their categories and 

compared their accuracies to the Paddy Field Map from the MoA of 2012. Comparison of classification 

images with reflectance inputs, index inputs, and the combinations of reflectance and index inputs are 

presented in Table 1, Table 2 and Table 3. From the table, it can be seen that the correctness of MLC 

classification with the inputs of reflectance images of bands Red, NIR, SWIR-1 shows that the paddy field is 
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quite high (20.66%), and higher than the classification with inputs of the combination of reflectance images 

Red, NIR, SWIR-1 and index images of NDVI and NOAI (19.92%).  

The accuracy of the classification analysis results with MLC on the three inputs is calculated and 

presented in Table 4. From the analysis results, it can be seen that the use of the combination of reflectance of 

band Red, NIR, SWIR-1, NDVI, and NOAI images gives higher accuracy of 85.43% (producer accuracy 

93.40%), compared to the use of only reflectance images of band Red, NIR, SWIR-1, that is 83.50% 

(producer accuracy 86.43%). The value of producer accuracy indicates that the paddy field that is detected by 

MODIS-Terra multi-temporal image has high accuracy. While the user accuracy value indicates that there are 

still many unidentified paddy fields using MODIS-Terra data. As an example, there is still 39.09% of paddy 

field which could not be identified using input reflectance or 36.18% of paddy field cannot be identified 

using input index, and 39.78% of paddy field cannot be identified using the input of the combinations of 

reflectance and index. 

The error of classification which should be classified as the paddy field, but is identified as non-

paddy fields, which are 3.24% for classification with reflectance image input and 1.41% in the classification 

with index image input. The type of paddy field affected classification accuracy, in addition to topography 

factor. 

Superimpose classification results with reflectance inputs, index inputs, the combinations of 

reflectance and index, is shown in Figure 7. From that figure, where the classification of paddy fields using 

reflectance input (indicated by Red), index inputs (indicated by Blue), the combinations of reflectance and 

index (indicated by Green). The area of paddy field using reflectance input is 76.10%, the area using index 

input is 78.67%, and the area using the combination of reflectance and the index is 71.89%. 

The causes of the low user accuracy and the number of paddy fields unidentified by the MODIS-

Terra image are slope and the types of paddy fields, the higher the slope the lower the accuracy. Besides, the 

rain-fed fields have lower accuracy than irrigated paddy fields. The difference of the year of reference data 

that is Paddy Field Map from the MoA (2012) and image of MODIS-Terra classification (2016) is also 

influencing the results of comparative analysis 
 

 

Table 1. The Concurrence Matrix Result with the 

Inputs of the Reflectance Images of Bands Red, 

NIR, SWIR-1 (%) 

References 

MODIS-Terra 

Non-Paddy 
Field 

Paddy 
Field Total 

Non- Paddy 

Field 62.84 3.24 66.08 

Paddy Field 13.26 20.66 33.92 
Total 76.10 23.90 100 

 

Table 2. The Concurrence Matrix Result with the Input 

of the Index Images of NDVI and NOAI (%) 

References 

MODIS-Terra 

Non-Paddy 

Field 

Paddy 

Field Total 

Non- Paddy 

Field 59.06 5.47 64.54 

Paddy Field 12.83 22.64 35.46 
Total 71.89 28.11 100 

 

 

 

Table 3. The Concurrence Matrix Result with the 

Input of the Combination of Reflectance Images 

Red, NIR, SWIR-1 (%) and the Index Images of 

NDVI and NOAI (%) 

References 

MODIS-Terra 

Non-Paddy 
Field 

Paddy 
Field Total 

Non- Paddy 

Field 65.51 1.41 66.92 

Paddy Field 13.16 19.92 33.08 
Total 78.67 21.33 100 

 

 

 

Table 4. The Results of the Calculation of MLC of 

Three Types of Classification Inputs  
Classification 

inputs 

Accuracy (%) 

User Producer Overall 

Reflectance 60.91 86.43 83.50 

Index 63.82 80.53 81.70 
Reflectance 

and Index 60.22 93.40 85.43 
 

 

 

The higher the slope factor the lower user accuracy, as shown in Graph of Accuracy relation to the 

slope in Figure 8. From the graph, it can be seen that the higher the slope the lower the accuracy, the user 

accuracy and the producer accuracy. It can also be seen that user accuracy decreases linearly, at slope <17% 

user accuracy will be >80%; and also producer accuracy drops sharply between slope 1% to slope 2%, then 

down linearly. This indicates that on the slope of 0-2% paddy fields can be well identified by MODIS-Terra 

data, whereas on slope >2% is difficult to identify.  

Types of paddy field will also influence the results of classification accuracy. The result of the 

calculation of the influence of these types of paddy fields is shown in Table 5. From the table, it is known 

that the variation of accuracy differences over the identified paddy field types is quite large, ranging from 
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23% to 78%. And a rain-fed lowland paddy is the most difficult type of paddy with user accuracy of 22.92% 

identified by this approach. From the result of comparative analysis between the results of area calculation 

based on the district boundary of three inputs of classification of paddy field and the Paddy Field Map from 

the MoA showed that all of the classification results performed accuracy more than 0.85. Those are the 

correlation (r
2
) of the reflectance input is 0.87, the index input is 0.89, and the combination of reflectance and 

index input is 0.85. The correlation among those approaches is shown in Figure 9. The result of comparative 

analysis between the results of area calculation based on the province boundary of three inputs of 

classification of paddy field and the Paddy Field Map from the MoA, showed that all of the classification 

results performed correlation (r
2
) more than 0.99. Those are the correlation (r

2
) of the reflectance input is 

0.998, the index input is 0.991, and the combination of reflectance and index input is 0.998. The correlation 

among those approaches is shown in Figure 10. The results of calculation per province of these phenological 

models are shown in Table 6. The result of this study provides a higher classification result than the previous 

study conducted by Xiao et al. with a correlation (r
2
) reached 0.49-0.65 (hilly-flat area of county-level) and 

0.80-0.88 (hilly-flat area of provincial level) for China, and reached 0.44 for Indonesia [28].  

 

 

 
 

Figure 7. Combination of RGB of various paddy fields of classification results, Note: Red is classification 

using reflectance Red, NIR, SWIR-1 (total area=76.10%); green is classification using both combinations of 

reflectance and index (total area=71.89%); blue is classification using index NDVI and  

NOAI (total area=78.67%) 

 

 

 
 

Figure 8. A graph of the relation of accuracy of result of classification with the input combination of 

reflectance and index images to slope 

 

 

Table 5. The Accuracy of Four Types Paddy Field Management of the Classification with the Input of 

the Combination of Reflectance and Index (%) 
Classification of paddy field based on 

the MoA data 

The result of paddy field identification by MODIS (%) User accuracy 
of paddy field Non-paddy field Paddy field Total 

Technically Irrigated 3.28 11.63 14.91 78.00 

Technically Semi Irrigated 4.09 6.11 10.20 59.92 

Simple Irrigated 0.91 0.73 1.64 44.56 
Rain-fed 4.89 1.45 6.34 22.92 

Non-Paddy Field 65.51 1.41 66.92 - 

Total 78.67 21.33 100.00 - 
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Figure 9. Correlation between the calculation of MODIS-Terra image classification results with the statistical 

data of Paddy Fields from the MoA base in district region 

 

 

 
 

Figure 10. Correlation between the calculation of MODIS-Terra image classification results with the 

statistical data of Paddy Fields from the MoA base in province region. 

 

 

By using the combination of reflectance and index metric input, the result of analysis using 

statistical data of 2016 only performed 64.1% of the identified paddy field area. However, by analysis, 

which, considering spatial distribution data as shown in Table 5 (% area of paddy field=21.33%) and 

Table 3 (% area of paddy field=33.08%), the result of accuracy base on statistical data is 21.33/33.08 

or 64.4%. 

 

 

Table 6. Comparison of Paddy Field Area of Classification Result and Reference Data by Province 

No Province 

The result of classification with phenological model (ha) 
Paddy field data from the 

MoA of 2016 (ha) Reflectance Index 
Combination of 

reflectance and Index 

1 East Java 779,394 977,677 721,967 1,087,018 

2 Central Java 674,724 755,890 610,696 963,665 

3 West Java 680,303 811,827 590,912 913,976 
4 Jogjakarta 51,397 37,676 35,432 53,985 

5 Banten 125,443 148,863 105,742 203,123 

6 Jakarta 1,390 134 888 581 
  Total 2,312,652 2,732,068 2,065,636 3,222,347 
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From Table 6 it is known that classified paddy fields vary from differences input in classification 

base on province regions. Compared with tabular data from the MoA in the same year of 2016, there are 2.3 

million ha (71.8%) can be identified by reflectance metric input, 2.7 million ha (84.8%) can be identified by 

Index metric input, and just 2.1 million ha (64.1%) can be identified by the combination of reflectance and 

index metric input. It means that the analysis using the combination of reflectance and index, input without 

considering spatial distributions performed the low result. The analysis using the combination of reflectance 

and index, input with considers the spatial distributions, as mentioned in Table 4 performed the higher result 

(overall accuracy of 85.43%). In line with the producer accuracy in Table 4 the higher paddy fields area using 

the combination of reflectance and index metric performed the highest of producer accuracy of 93.4 %. 

 

 

3. CONCLUSION  

The development of the paddy field classification model using phenological model using annual 

multi-temporal satellite image transformation was carried out on the Java Island. The satellite data used was 

MODIS-Terra image of two tiles of H28v09 and H29v09 of 2016, consisting of 46 series data of 8-daily data, 

with the spatial resolution of 500 meters. The paddy field classification method is carried out by classifying 

Maximum Likelihood on the reflectance, index, and the combination of reflectance and index data of the 

transformed annual multi-temporal satellite image.  

The paddy field classification results show that the use of annual multi-temporal image with a 

combination of reflectance and index data provides the highest classification accuracy among other 

approaches, with 85.4% of the overall accuracy, 60.91% of the user accuracy, and 93.4% of the producer 

accuracy. The classification using only the reflectance provides 83.5% of the overall accuracy, 60.22% of the 

user accuracy, and 86.43% of the producer accuracy. While the approach using index, input alone provides 

81.7% of the overall accuracy, 63.82% of the user accuracy, and 80.52% of the producer accuracy. The low 

user accuracy indicates that many paddy fields cannot be identified using MODIS-Terra data with this 

approach. 

The low user accuracy or the low areas of paddy fields that cannot be identified by the MODIS-

Terra image with this approach is caused by two factors, namely slope, and type of paddy fields. The higher 

slopes have lower user accuracy, and in the 0-2% slopes can be well identified by MODIS-Terra data, 

whereas on the slope >2 is difficult to identify. Rain-fed lowland types have a lower user accuracy than 

irrigated paddy fields.  

From the analysis with the reference of the Paddy Field Map from the MoA, it is known that the 

result of this study performed correlation (r
2
) >0.85 based on the district boundary, and >0.99 based on 

provincial boundary. These correlations were much higher than the previous study, which reached 0.49-0.65 

(hilly-flat area of county-level) and 0.80-0.88 (hilly-flat area of provincial level) for China, and reached 0.44 

for Indonesia. It is concluded that the phenological model using image transformation could be used to 

predict the area of paddy field in a higher accuracy, for flat area as well as hilly area.  
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