
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 9, No. 6, December 2019, pp. 4804~4814

ISSN: 2088-8708, DOI: 10.11591/ijece.v9i6.pp4804-4814  4804

Journal homepage: http://iaescore.com/journals/index.php/IJECE

Congestion bottleneck avoid routing in wireless sensor networks

Sanu Thomas, Thomaskutty Mathew
School of Technology and Applied Sciences, Mahatma Gandhi University, India

Article Info ABSTRACT

Article history:

Received Jul 23, 2018

Revised May 4, 2019

Accepted Jun 26, 2019

 A new efficient method for detecting congested bottleneck nodes and

avoiding them in the route formation in a wireless sensor network is

described. Sensor nodes with a higher degree of congestion are excluded

while determining the best routing path from a given source to destination in

a multi-hop transmission. In a scenario where different communication paths

have different maximum congestion levels, selecting that path which has

least maximum congestion, is a challenging task. A modified Bellman-Ford

algorithm is proposed to solve this problem efficiently. The proposed

technique is very much useful for the optimal route selection for vehicles in

metropolitan cities that avoids high traffic density junctions. Once the desired

destination is specified, the traffic control system can use this algorithm to

provide the least congested routes to the intra-city vehicles.

Keywords:

Bottleneck avoid routing

Congestion bottleneck nodes

Congestion levels

Dynamic programming

Maximum congestion Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Sanu Thomas,

School of Technology and Applied Sciences,

Mahatma Gandhi University,

Kottayam, Kerala, India.

Email: thomas.sanu@gmail.com

1. INTRODUCTION

Easy availability of low cost but reliable sensor nodes has increased the popularity and utility of

Wireless Sensor Networks (WSN’s) for diverse applications [1, 2]. When sensors are deployed densely with

heavy traffic load, congestion is inevitable. Traffic in Event triggered WSN causes more congestion

compared to that of periodic transmission [3]. In general, the traffic pattern in WSN is typically many-to-one.

This introduces heavy congestion in nodes near to the sink or the base station [4]. Congestion causes packet

losses, delayed delivery, early depletion of battery life etc. Several techniques are available to detect, mitigate

and avoid congestion [5-7]. In this paper, the main objective is to determine the best multi-hop path that

excludes the higher congestion nodes among several available paths from a given source to destination.

One way of controlling node level congestion is to use data rate control [8]. The second method is

resource control [9] where more network resources like bandwidth and additional routes are provided to

share the load. In resource control, multipath and alternate path routing are used to avoid or bypass

the congested nodes or regions. The proposed work chooses the alternate path routing. Here, we introduce

the optimal path (route) selection technique that avoids nodes having high levels of congestion. These high

congestion level nodes, if included in the path, act as bottleneck nodes while forwarding data from a source

to a given destination. The proposed solution is to select the optimal path that avoids these bottleneck nodes.

The solution involves the application of Bellman’s dynamic programming in an ingenious way which is

the originality of this work.

Experimental result shows that the proposed method is 15-20 percent faster compared to ‘Topology-

Aware Resource Adaptation’ (TARA) method [9]. Another advantage of our method is, it provides a higher

degree of load balancing compared to TARA. In section 2, a brief description of the related work is

discussed. Section 3 gives network model and assumptions. The main algorithm is described in Section 4.

In section 5, comparison with other methods is discussed. Section 6 gives conclusion.

Int J Elec & Comp Eng ISSN: 2088-8708 

Congestion bottleneck avoid routing in wireless sensor networks (Sanu Thomas)

4805

2. RELATED WORK

In [10], only a few important nodes are selected as representative reporting nodes instead of all

the nodes which sense the event. This reduces the traffic load and thereby the congestion is reduced,

but the data reliability is compromised to some extent because all the sensing nodes do not send their data.

In [6], the authors identify the suitable backward and forward nodes for sharing the load. Then the congestion

levels are predicted and the load is properly shared to reduce congestion. Here, the load balancing is not

equalized over the transmission paths. TARA: “Topology-Aware Resource Adaptation to Alleviate

Congestion in Sensor Networks”, is described in [9]. Here, additional nodes and links are brought into serve

the present traffic. Congest prone nodes are partially bypassed to avoid congestion. This is essentially a

truncated multi-path routing and load balancing is not fully addressed. CODA: “Congestion Detection and

Avoidance in sensor networks", in [11] uses closed-loop multi-source regulation. In designing CODA,

importance is given to energy saving in sensor nodes. Here, the computational overhead is relatively high.

In [12], the authors propose ECODA: “Enhanced Congestion Detection and Avoidance”. Here, dual

threshold buffers are used for congestion detection. Channel utilization is optimized by proper control

mechanism. In this case, the computational overhead is higher than CODA and the control mechanism is

rather complex. Extensive surveys on congestion alleviation techniques are given in [13, 14].

3. NETWORK MODEL AND ASSUMPTIONS

Consider a WSN with N homogeneous sensor nodes. We assume the presence of a Base Station

(BS) or Sink that controls the WSN and collects data from the sensors. The communication is mainly either

from the BS towards the sensor nodes or vice-versa. But any node can act as a source as well as a destination.

Because of the limited transmission range of individual sensor nodes, the multi-hop communication is

adopted between the source and the destination. The intermediate sensor nodes act as relay nodes.

The following assumptions are made about the WSN.

a. Sensor nodes are homogeneous and static.

b. Sensors have limited battery energy.

c. The BS has sufficient power and runs the proposed centralized algorithm.

3.1. Wireless sensor network as a graph

The WSN is represented by a planar graph G(V, E) where V is the vertex set of N nodes and E is

the edge set. The sensor nodes are identified and represented by the vertices 1, 2,.., N. The vertex or node set

V is given by,

V = [1, 2,... N − 1, N] (1)

The edge set E is the collection of all the links of the network. Edge element e(i, j) represents

the edge between node i and j for all i and j in the range 1 to N. The edge value e(i, j) is set to 1 if node i and

j are within the transmission range of each other. Otherwise, e(i, j) is set to ∞. Therefore, e(i, j) = 1 means

nodes i and j are one-hop neighbors and there is connectivity between them and e(i, j) = ∞ means, i and

j cannot communicate directly. Only connecting edges will be shown in the graph. One hop neighbor nodes

are also called adjacent nodes. Here, bidirectional links are assumed between one-hop neighbors. Therefore,

e(i, j) = e(j, i). We take e(i, i) = ∞ to avoid self-loops. The collection of e(i, j)’s form the adjacency or

connectivity matrix for the graph of the network.

3.2. Path from the source to the destination

A path from a source node s to a destination node t is a sequence of non-repeating adjacent

(one hop) nodes starting from s and ending at t. Non repetition of nodes assures that the path is free of loops.

Adjacency of nodes along the path assures continuous connectivity from the source to the destination.

There can be several paths from s to t in a given graph (network).

3.3. Measure of congestion level at a node

Several metrics are used to measure the congestion level or the degree of congestion at a node

(Akyildiz et al., 2002). Without any loss of generality, we take the queue length of packets at a given node as

the measure of the congestion level at that node. It is assumed that the sizes of buffers at nodes are

sufficiently large so that there is no loss of packets in any queue due to overflow. It is also assumed that

the queue lengths change relatively slowly with respect to time so that during the calculation and rediscovery

of the optimal paths, the queue lengths remain nearly constant.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 6, December 2019 : 4804 - 4814

4806

In general, the congestion levels of the sensors nodes remain almost same in a session.

The centralized controller, BS collects this information periodically. This period depends on the applications

and characteristics of the network. The present congestion level of node i is represented by symbol 𝑄𝑖 for

i = 1 to N. The congestion array for the entire WSN is written as,

𝑸 = [𝑄1, 𝑄2, … , 𝑄𝑖 , … , 𝑄𝑁] (2)

3.4. Congestion levels along a path

Once, 𝑄𝑖’s are known for all the nodes, consider all possible loopless paths from a specific source

node s to a given destination node t. Let the number of distinct paths from s to t be M. Let path j be

represented by Pj as,

𝑷𝒋 = [𝑠, 𝑣𝑗,1, 𝑣𝑗,2, … , 𝑣𝑗,𝑘, … , 𝑣𝑗,𝐿(𝑗), 𝑡] (3)

for j = 1 to M. In (3), L(j) is the total number of intermediate nodes along Pj and 𝑣𝑗,𝑘 is the kth intermediate

node of path Pj for k = 1 to L(j) with 𝑣𝑗,𝑘 ∈ V. In Pj all the nodes along the path are connected. That is,

the corresponding elements of the adjacency matrix are 1’s as,

𝑒(𝑣𝑗,𝑘−1, 𝑣𝑗,𝑘) = 1 (4)

for k = 1 to L(j) + 1. In (4), 𝑣𝑗,0 = 𝑠 and 𝑣𝑗,𝐿(𝑗)+1 = 𝑡. The (4) simply means that any two adjacent nodes in

Pj are within the communication range of each other.

The Congestion array (or vector) of a path is the sequence of the congestion levels of the nodes

along that path. For the path specified by (3), the array that represents the congestion levels is represented by

CL as,

𝑪𝑳𝒋 = [𝑄𝑠 , 𝑄𝑗,1, 𝑄𝑗,2, … , 𝑄𝑗,𝑘 , … , 𝑄𝑗,𝐿(𝑗), 𝑄𝑡] (5)

Here, the source and the destination nodes are fixed (specified) for all possible paths from s to t.

Since the packet stops at t, the congestion at t is not relevant for the packet travelling from s to t. Therefore,

term Qt in (5) can be ignored. In defining the effective Congestion Vector 𝐶𝑗 for the purpose of determining

the optimal path, we exclude 𝑄𝑡 from (5). The resulting effective congestion vector is,

𝑪𝒋 = [𝑄𝑠 , 𝑄𝑗,1, 𝑄𝑗,2, … , 𝑄𝑗,𝑘, … , 𝑄𝑗,𝐿(𝑗)] (6)

Here, 𝑄𝑗,𝑘 is the congestion level of node 𝑣𝑗,𝑘 in a proper unit and k varies from 1 to L(j). That is, 𝑄𝑗,𝑘 =

𝑄𝑣𝑗,𝑘
. Thus 𝑄𝑗,𝑘 ∈ 𝑸.

Example 1: To demonstrate the formations of 𝑷𝒋’s and 𝑪𝒋’s, a simple network is shown in Figure 1.

Here, source s = 1 and the destination t = 5 with number of nodes N = 5 and the number of distinct paths,

M = 4. Congestion at source is taken as 0, which will be explained later.

The paths from 1 to 5 and their congestion levels are,

𝑷𝟏 = [1, 2, 5]. 𝑪𝟏 = [Q1, Q2] = [0, 40].

𝑷𝟐 = [1, 2, 4, 5]. 𝑪𝟐 = [Q1, Q2, Q4] = [0, 40, 20].

𝑷𝟑 = [1, 3, 4, 5]. 𝑪𝟑 = [Q1, Q3, Q4] = [0, 30, 20].

𝑷𝟒 = [1, 3, 4, 2, 5]. 𝑪𝟒 = [Q1, Q3, Q4, Q2] = [0, 30, 20, 40].

Figure 1. Network with 5 nodes

Int J Elec & Comp Eng ISSN: 2088-8708 

Congestion bottleneck avoid routing in wireless sensor networks (Sanu Thomas)

4807

3.5. Maximum congestion level of a path

The maximum congestion level of path Pj, represented by variable Rj, is defined as the maximum of

array𝑪𝒋. That is,

𝑅𝑗 = 𝑚𝑎𝑥(𝑪𝒋) (7)

The (7) also can be expressed as,

𝑅𝑗 = 𝑚𝑎𝑥
𝑘∈{1:𝐿(𝑗)}

(𝑄𝑗,𝑘) (8)

This gives the maximum of 𝑄𝑗,𝑘 over k in the range 1 to L(j). Thus Rj is determined by finding the

maximum of the congestion levels of nodes forming the path excluding the source and the destination nodes.

In Example 1, R1 = 40. R2 = 40. R3 = 30. R4 = 40.

3.6. Minimum among Rj’s

Let R be the array formed by Rj’s for j = 1, 2, ..., M as,

𝑹 = [𝑅1, 𝑅2, … , 𝑅𝑗, … , 𝑅𝑀] (9)

In Example 1, 𝑹 = [40, 40, 30, 40].
Our objective is to find that index j, say J, where RJ is the minimum of the array R. This can be stated as,

𝐽 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑗∈{1:𝑀}

(𝑅𝑗) (10)

In Example 1, the min(R) occurs at index location 3. Therefore J = 3, RJ =30 and the optimal path is PJ = P3.

Substituting for Rj from (8) in (10), we get,

𝐽 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑗∈{1:𝑀}

(𝑚𝑎𝑥
𝑘∈{1:𝐿(𝑗)}

(𝑄𝑗,𝑘)) (11)

Once J is obtained, the corresponding minimum among Rj’s is RJ (the Jth element of array R) and it can be

expressed as,

𝑅𝐽 = 𝑚𝑖𝑛([𝑅1, 𝑅2, … , 𝑅𝑀]) = min (𝑹) (12)

Once J is known, the optimal path from s to t is PJ as specified in (3). This path is designated as

OP(t). The values of J, PJ and RJ for a given source s depend on the destination t. Therefore, we designate J

as given by (10) as J(t) and the corresponding minimised maximum congestion level value RJ as f(t) .

Then we rewrite (10) and (12) as,

𝐽(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛
 𝑗∈{1:𝑀}

(𝑅𝑗) (13)

𝑓(𝑡) = 𝑅𝐽(𝑡) = 𝑚𝑖𝑛([𝑅1, 𝑅2, … , 𝑅𝑀]) (14)

That is, f(t) can be written as,

𝑓(𝑡) = min
𝑗∈{1:𝑀}

(𝑅𝑗) = min (𝑹) (15)

When we select the optimal path OP(t), the relatively higher congestion level nodes are avoided

while travelling from s to t. The variable f(t) from (15), represents the maximum congestion level of path

OP(t) from s to t.

3.7. Objective

The objective is to determine f(t) and the optimal path OP(t) for a given s and for all t’s in

(t∈{1:N}\s) . We designate this path as the Congestion Bottleneck Node Avoid Path (CBNAP) and designate

the method to determine CBNAP as the CBNAP algorithm.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 6, December 2019 : 4804 - 4814

4808

4. DETERMINATION OF CBNAP

4.1. Exhaustive search method

In general, for a given WSN, by knowing its topology, we can enumerate all possible paths from

a given source node s to a destination node t. Along each path, we can find that node which has the highest

congestion level among all the nodes of that path. This gives the maximum congestion level of that path.

After determining the maximum congestion level of each path from s to t, we can select that path which has

the least maximum congestion level value. But this method is NP hard, because the number of possible paths

increases exponentially as N increases. Therefore, the dynamic programming approach is adopted to solve

this problem.

4.2. Dynamic programming approach

As usual, the source node is denoted by s. Let t be any other node reachable from s with OP(t) as

the optimal path from s to t and f(t) as the minimized maximum congestion level value of that path.

Let OP(t) = [v0, v1, …, vn] where v0 = s and vn = t. Then, by knowing f(v0), the Dynamic Programming

method solves, f(v1) in terms of f(v0), f(v2) in terms of f(v1),…, f(vn) in terms of f(vn−1). The sub-optimal

problems are solved recursively.

4.2.1. Effective congestion at source s

Whatever the actual congestion level at s, all the paths have to start from s. There is no other option.

The congestion level Qs is common for all paths starting from s. Therefore, for the purpose comparison and

calculation of the congestion levels of the paths, effective Qs is set to zero as,

Qs = 0 (16)

The minimized maximum value of Qs is also 0. Therefore the corresponding f(s) = 0.

4.2.2. f(t) values for a one-hop neighbours of s

One hop neighbours of s are shown in Figure 2. Here, t1, t2,…, tK are the one hop neighbours of s.

Figure 2. One hop neighbours of s

Since, t1 is directly connected to s, path (s, t1) is a single link (single hop) path. The minimum as well as

the maximum congestion level of path (s, t1) is Qs itself which is zero as given by (16). Therefore,

f(t1) = Qs = 0 (17)

This relation holds good even when we have a two hop path from s to t1 through an intermediate

node i as shown in Figure 4. Here, we have two paths (s, t1) and (s, i, t1). The corresponding maximum

congestion levels are. For path P1 = (s, t1), R1 = max(Qs) = Qs = 0. For path P2 = (s, i, t1), R2= max([Qs, Qi]) =

max(0, Qi) = Qi. The minimised maximum value f(t1) is,

f(t1) = min(R1, R2) = min(0, Qi)) = 0 (18)

The (18) holds good even when there are additional multi-hop paths to t1 from s. Similar relation holds good

for t2, t3,…, tK which have one hop connectivity with s, as

f(t2) = f(t3) = … = f(tK) = 0 (19)

Int J Elec & Comp Eng ISSN: 2088-8708 

Congestion bottleneck avoid routing in wireless sensor networks (Sanu Thomas)

4809

The (18) and (19) can be combined to state an important property of f(.) as follows.

Property 1: When a node i belongs to the one hop neighbour set of s, then,

f(i) = 0 for i ∈ one hop neighbours of s (20)

Thus, 𝑓(𝑖)’s of one hop neighbours of s are directly calculated using (20). Let the one hop neighbours of s be

grouped into a set designated as A0. That is,

A0 = {one hop neighbours of s} (21)

Then, for i ∈ A0, the values f(i)’s are 0 as given by (20). Starting from the known values of f(i)’s (for i ∈ A0),

the values of 𝑓(𝑖)’s of other nodes (i ∉ A0) are calculated using the principle of dynamic programming.

4.3. Calculation of f(t) by dynamic programming for any t

All the nodes of the network are grouped into two disjoint sets designated as A and B. Set A holds

those nodes whose f(i)’s have been already calculated and are known. Thus the optimal paths OP(i)’s are

known for i ∈ A. Nodes in set B holds those nodes whose f(i)’s are not known and yet to be calculated.

Therefore B = {[1:N] – A}

A = {Nodes whose f(i)’s have already been calculated and known} (22)

B = {Nodes whose f(i)’s have yet to be calculated and to be refined} (23)

Unknown and uncalculated f(i)’s are initialized to ∞ so that they are excluded while calculating the minimum

as explained later.

4.3.1. Initialization of f(i)’s

The calculation of f(i)’s for all i’s is an iterative process. Initially, the one hop nodes of s are

calculated to get A0. The f(i)’s for i ∈ A0, are set to 0 and f(i)’s for i ∉ A0, are set to ∞. These are the initial

values of f(i)’s. Initialization operations can be called as iteration 0. For the first iteration, the previous

iteration is taken as iteration 0. The values of f(i)’s for iteration 0 are the initial values which are already

known. In the first iteration, consider a target node t that belongs to B. Now 𝑓(𝑡) is ∞. Let M be the number

one hop neighbour nodes of t which are also members of set A. Let these nodes be denoted by i1, i2,…, iM as

shown in Figure 3. That is ik ∈ A and e(ik, t) = 1. If M = 0, then the next node from set B is taken as t and

again M is determined. This process is repeated until M becomes greater than zero. In general these

neighbour nodes will be all around t. But for the purpose of ease of explanation, they are shown in a single

column to the left of t. Congestion level Qi,k of ik are also marked in Figure 3 for k = 1 to M.

Figure 3. Multi hop paths for node t

In Figure 3, consider the path [s – ik – t]. It is made up of [s – ik] in cascade with [ik – t]. Here, path

[s – ik] is the optimal path, because 𝑓(𝑖𝑘) has already been calculated and is known. 𝑓(𝑖𝑘) Gives

the maximum congestion along [s – ik]. The congestion level contributed from node ik to path [ik – t] is Qi,k.

Therefore, the overall maximum congestion level along the path [s – ik – t], is given by,

max[𝑠 − 𝑖𝑘 − 𝑡] = 𝑅(𝑖𝑘) = 𝑚𝑎𝑥(𝑓(𝑖𝑘), 𝑄𝑖,𝑘) (24)

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 6, December 2019 : 4804 - 4814

4810

Here all ik’s belong to A. Using (24), 𝑅(𝑖𝑘)′𝑠 are calculated for all ik’s for k = 1 to M. Then, the minimized

maximum for this path, in the present iteration is represented by g(t) and it is calculated as,

𝑔(𝑡) = min
 k=1:M

(𝑅(𝑖𝑘)) (25)

Substituting for 𝑅(𝑖𝑘) in (25) rom (24),

𝑔(𝑡) = min
 k=1:M

(𝑚𝑎𝑥(𝑓(𝑖𝑘), 𝑄𝑖,𝑘)) (26)

Once g(t) is calculated, it is compared with the existing value of f(t) (from the previous iteration) and

the present f(t) is updated only if g(t) is less than f(t). That is,

𝑓(𝑡) = {
𝑔(𝑡) if 𝑔(𝑡) < 𝑓(𝑡),

𝑓(𝑡) otherwise
 (27)

Now t is removed from B and added to A. Set A grows and B contracts. Now next t from B is taken

up and f(t) for this t is updated as given by (27). Once all the elements in B are covered, (B goes empty),

the present iteration is over and the next iteration starts. In the next iteration, same process as in first iteration

repeats but with the updated set of f(i)’s.

4.3.2. Stopping criterion

During successive iterations, f(t)’s are updated according to (27). To express this in a compact form,

let the collection of all f(t)’s for t = 1 to N for a given s, be represented by the array F as,

𝑭 = [𝑓(1), 𝑓(2), … , 𝑓(𝑁)] (28)

Then, F is updated in successive iterations. The theoretical maximum number of iterations is (N−1) [15].

In practice, if F does not change from the previous to the present iteration, then F will not change in further

iterations too. After this, the process can break out of the iteration loop and there is no need to complete

the (N−1) theoretical iterations. To facilitate the termination of the iterations, the value of F at the end of

the previous iteration is stored in Fold. At the end of the present iteration, the updated F is compared to Fold.

If F= Fold, the iteration loop is terminated.

The optimal path is obtained using the predecessor vector pred of size N as usual [15].

Determination of f(t)’s and the pred vector is described in Algorithm 1. This is basically a centralized

algorithm. But can be converted into its equivalent distributed algorithm. The algorithm is a modification of

Bellman-Ford shortest path algorithm [15].

Algorithm CBNAP

Inputs: N = No. of nodes in the WSN. E = Edge connectivity (Adjacency) matrix.

 Q = Congestion level vector for all nodes. s = Source node.

Outputs: OP(t) = Optimal path from s to, t for t =1 to N

 f(t) = Minimized maximum congestion level of path OP(t) for t = 1 to N.

1. Initialize all f(t)’s to ∞ and pred(t)’s to 0 as,

 For t = 1 to N, f(t) = ∞; pred(t) = 0; Endfor t

2. Set f(s) = 0 ; Take A0 = [s] //start with

3. Get the one hop neighbours of s and calculate f(t)’s for them as,

For t = 1 to N

If e(s, t) =1, f(t) = 0; pred(t) = s; A0 = [A0, t]; Endif

Endfor t //Set A0 is ready

4. Take set A = A0, Take B = [1:N]−A

5. Store f(t)’s for t ∈ {1: N} in array F as, F = [f(1), f(2), …, f(N)]

// Initialization over. First iteration starts.

Set Fold = F //save F in Fold.

6. For h = 1 to N−1 //first iteration. //h is the iteration count.

 For each t in B while B is not empty

For i = 1 to N // Neighbour nodes of t

R(i) = ∞ //initial value

Int J Elec & Comp Eng ISSN: 2088-8708 

Congestion bottleneck avoid routing in wireless sensor networks (Sanu Thomas)

4811

if (i = = t) continue; if (e(i , t) = = ∞) continue ;

calculate R(i) from (24) as, 𝑅(𝑖) = 𝑚𝑎𝑥(𝑓(𝑖), 𝑄𝑖)

end for i

7. Find the minimum of the array R as,

[g(t), index] = min(R); If g(t) = = ∞ continue endif

8. if g(t) < f(t), f(t) = g(t); pred(t) = index; endif

endfor t

9. Get the updated array F for t =1 to N as, F = [f(1), f(2), …, f(N)];

If F = = Fold Break (Go to 11) endif

10. Store F in Fold for the comparison in the next iteration as, Fold = F;

Endfor h //end of h loop

11. Over

Once pred(t) is ready for t =1 to N, the corresponding OP(t)’s are easily obtained [15] using the function

get_TS(…) as given below.

function TS = get_TS(pred, t, s)

 TS=[t]; while t~=s, TS=[TS,pred(t)];t=pred(t);end

Vector TS gives the path from t to s. Path OP(t) which is the path from s to t is obtained by reversing

the sequence TS. Algorithm CBNAP in association with function get_TS(…) gives f(t)’s and the Congestion

Bottleneck Node Avoid Paths, OP(t)’s, from s to all other nodes. Once f(t)’s are determined for t = 1 to N for

a given s, those high congestion level nodes whose Q’s are greater than max(F) are excluded from

participating as intermediate nodes in the routing process in the present session. Thus these bottleneck nodes

are avoided acting as intermediate nodes during the discovery of the optimal path. Here, OP(t)’s are

the optimal paths from BS to sensors and the reverse of OP(t)’s provide the optimal paths from each sensor

to BS.

Example 1: A network with 10 nodes, is represented as an undirected graph as shown in Figure 4. Nodes are

shown in black. Congestion levels at nodes are shown in red. The node locations in Figure 4 are not exact

physical locations. They are just representative for visual identification. The connectivity among nodes is

represented by the connected links. In Figure 4, s =1. The present congestion levels, with Qs= 0, are given as,

Q =[0,70,11,110,15,40,80,2,30,12];

Figure 4. Graph layout for example 2

After running CBNAP, the resulting f(t) and pred(t) values are shown in Table 1, for t = 1 to 10.

For lack of space, column heading Up date is represented by Ud and the variable pred(t) by P(t) in Table 1.

We can see the updated values of f(t) after each update.

After update 9, the F vector is same as that of update 8. That is, F = Fold and then the process

converges. In this example, the main outer loop starting at step 8 of CBNAP algorithm terminates

after 3 iterations. Here, max (F) = 15 and the bottleneck nodes having Q values greater than 15 are nodes 2,

4, 6, 7, 9. These nodes are excluded from acting as intermediate nodes in any optimal path originating from s.

From Table 2, it can be clearly seen that nodes 2, 4, 6, 7, 9 are absent as intermediate nodes in all

the optimal paths.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 6, December 2019 : 4804 - 4814

4812

Table 1. Values of P(t) and f(t) after successive updates
Ud t 1 2 3 4 5 6 7 8 9 10

1
P(t) 0 1 1 1 - - - - - -

f(t) 0 0 0 0 ∞ ∞ ∞ ∞ ∞ ∞

2
P(t) 0 1 1 1 3 - - - - -

f(t) 0 0 0 0 11 ∞ ∞ ∞ ∞ ∞

3
P(t) 0 1 1 1 3 3 - - - -
f(t) 0 0 0 0 11 11 ∞ ∞ ∞ ∞

4
P(t) 0 1 1 1 3 3 5 - - -

f(t) 0 0 0 0 11 11 15 ∞ ∞ ∞

5
P(t) 0 1 1 1 3 3 5 5 - -

f(t) 0 0 0 0 11 11 15 15 ∞ ∞

6
P(t) 0 1 1 1 3 3 5 5 6 -
f(t) 0 0 0 0 11 11 15 15 40 ∞

7
P(t) 0 1 1 1 3 3 5 5 6 8

f(t) 0 0 0 0 11 11 15 15 40 15

8
P(t) 0 1 1 1 3 3 5 5 10 8

f(t) 0 0 0 0 11 11 15 15 15 15

9
P(t) 0 1 1 1 3 3 5 5 10 8
f(t) 0 0 0 0 11 11 15 15 15 15

Table 2. Optimal OP(t)’s and f(t)’s
s t Optimal path OP(t) f(t) P(t)

1 2 1→2 0 1
1 3 1→3 0 1

1 4 1→4 0 1

1 5 1→3→5 11 3
1 6 1→3→6 11 3

1 7 1→3→5→7 15 5

1 8 1→3→5→8 15 5

1 9
1→3→5→8

→10→9
15 10

1 10 1→3→5→8→10 15 8

5. COMPARISON WITH OTHER METHODS

Congestion avoid route can be determined by the simple ‘GREEDY’ method. The basic idea here is,

starting from the source, to select the least congested neighbor node as the next forwarding node until

the final destination is reached. Greedy method is invariably sub-optimal, because it will not foresee all

possible alternatives. But it is fast. Another available solution is to use ‘TARA’ [9] to alleviate congestion in

WSNs. Our Method CBNAP is compared to ‘TARA’ and ‘GREEDY’ methods.

5.1. Time complexity

The time complexity of CBNAP is O(N3) [15]. The experimental completion time taken to get

the optimum result for successive values of N is shown in the graph of Figure 5. Here, the number of edges

and the adjacency matrix are randomly generated. The congestion level values of nodes are chosen using

uniform random distribution. From Figure 5, it can be seen that, the time taken to generate the optimal

solution increases as the number of nodes increases. The GREEDY method is faster compared to CBNAP

while TARA is slower.The time saved in CBNAP is about 15-20% when the number of nodes is in

the range 160-180.

5.2. Load Balance Index

Load balancing is an effective technique for congestion control [16-20]. CBNAP selects path with

lower congestion levels. Therefore, when communication takes place using this path, the overall load balance

improves because only the less congested nodes carry the present load. The fairness of load balance is

measured using the load balance index (LBI) [16]. LBI is defined as,

LBI =
(∑ 𝑄𝑖

𝑁
𝑖=1)

2

𝑁∗∑ 𝑄𝑖
2𝑁

𝑖=1

 (29)

where Qi is the congestion level at node i, for i = 1 to N.

When the loads are perfectly balanced (Qi’s are all equal) the LBI is one. On the other hand, LBI is

low when the distribution of congestion levels is highly skewed (unbalanced). In the simulation experiment,

the minimum congestion level is kept constant in each trial. The Maximum Congestion Level (MCL) of

Int J Elec & Comp Eng ISSN: 2088-8708 

Congestion bottleneck avoid routing in wireless sensor networks (Sanu Thomas)

4813

the network is successively increased in steps of 100 and the corresponding load balance indices are

calculated for CBNAP, GREEDY and TARA algorithms. The MCL value represents the degree of unbalance

of the pending traffic loads at nodes. The simulation result is shown in Figure 6. Here, the LBI’s are very

nearly same at lower values of MCL and LBI’s diverge at higher values of MCL. From the plotted results, it

can be seen that CBNAP provides better load balance. This is because CBNAP utilizes lower congested

nodes for constructing the paths, even though the path length may be longer. Thus CBNAP achieves better

LBI.

Figure 5. Execution time vs number of nodes

Figure 6. Load balance index vs maximum congestion level

6. CONCLUSIONS

A centralized algorithm has been described for finding the minimized maximum congestion level

paths from a given source to every other destination. Those bottleneck nodes having higher congestion levels

are excluded from acting as forwarding nodes. This centralized algorithm can be converted into an equivalent

distributed algorithm that can be implemented at individual nodes. The proposed technique can be applied to

determine the minimized maximum delay and maximum cost paths, maximized minimum remaining energy

path and so on. This technique can be adopted by the vehicular traffic control system at metropolitan cities to

avoid densely congested junctions for smooth flow of automotive traffic.

REFERENCES
[1] I. Akyildiz, et al., “A Survey on Sensor Networks,” IEEE Communications Magazine, vol. 40, pp.102-114, 2002.

[2] R. Sharma and N. T. S. Kumar, “Review paper on wireless sensor networks,” Proc. of the Intl.Conf. on Recent

Trends in Computing and Communication Engineering – RTCCE, pp. 255-258, 2013.

[3] B. Hull, et al., “Mitigating congestion in wireless sensor networks,” International Conference on Embedded

Networked Sensor Systems, Maryland, 2004.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 6, December 2019 : 4804 - 4814

4814

[4] T. E. Cheng and R. Bajcsy, “Congestion Control and Fairness for Many-to-One Routing in Sensor Networks,”

Proc. 2nd Int. Conf. on Embedded Networked Sensor Systems, 2004, pp. 148-161.

[5] H. Tall, et al., “M-CoLBA: Multichannel Collaborative Load Balancing Algorithm with queue overflow avoidance

in WSNs,” 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia,

2017, pp. 2127-2133.

[6] Heikalabad S. R., et al., “DPCC: Dynamic Predictive Congestion Control in Wireless Sensor Networks,”

International Journal of Computer Science (IJCSI), vol. 8, pp. 1694-0814, 2011.

[7] Q. Pang, et al., “Reliable data transport and congestion control in wireless sensor networks,” Int. J. Sensor

Networks, vol. 3, pp. 16-24, 2008.

[8] N. Prabakaran, et al., “Rate Optimization Scheme for Node Level Congestion in Wireless Sensor Networks,”

Devices and Communications (ICDeCom), 2011 International Conference, Mesra, 2011, pp. 1-5.

[9] J. Kang, et al., “TARA: Topology-Aware Resource Adaptation to Alleviate Congestion in Sensor Networks,” IEEE

Transactions on Parallel and Distributed Systems, vol. 18, pp. 919-931, 2007.

[10] W. Fang, et al., “Congestion avoidance, detection and alleviation in wireless sensor networks,” Journal of Zhejiang

University-Science, vol. C11, pp. 63-73, 2009.

[11] C. Y. Wan, et al., “CODA: congestion detection and avoidance in sensor networks,” Proceedings of the 1st

international conference on Embedded networked sensor systems, ACM, 2003, pp. 266-279.

[12] L. Tao and F. Yu, “A novel congestion detection and avoidance algorithm for multiple class of traffic in a sensor

network,” Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), IEEE International

Conference on, 2011, pp. 72-77.

[13] M. A. Kafi, et al., “Congestion control protocols in wireless sensor networks: A survey,” Communications Surveys

& Tutorials, IEEE, vol. 16, pp. 1369-1390, 2014.

[14] S. A. Shah, et al., “Congestion control algorithms in wireless sensor networks: Trends and opportunities,” Journal

of King Saud University - Computer and Information Sciences, 2016.

[15] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, New Delhi: Galgotia Publications, 1997.

[16] P. Hsiao, et al., “Load Balancing Routing for Wireless Access Networks,” Proceedings IEEE Infocom 2001,

pp. 986-995, 2001.

[17] G. P. Sunitha, et al., “Optimized congestion aware energy efficient traffic load balancing scheme for routing in

wireless sensor networks,” International Conference on Information Processing (ICIP), Pune, 2015, pp. 696-701.

[18] O. Chughtai, et al., “A congestion-aware and energy efficient traffic Load balancing Scheme for routing in WSNs,”

TENCON 2014 - 2014 IEEE Region 10 Conference, Bangkok, 2014, pp. 1-6.

[19] C. Basaran, et al., “Hop-by-hop congestion control and load balancing in wireless sensor networks,” IEEE Local

Computer Network Conference, Denver, CO, 2010, pp. 448-455.

[20] N. Goyal, et al., “Congestion control and load balancing for cluster based underwater wireless sensor networks,”

2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat,

2016, pp. 462-467.

BIOGRAPHIES OF AUTHORS

Sanu Thomas holds B.E. degree in Electronics & Communication and M.Tech. Degree in

Computer Engineering from University of Mysore, India. Since 1998, he is working as Faculty in

the Department of Computer Science, School of Technology and Applied Science, Kottayam,

Kerala, India. He is currently pursuing the Ph.D. degree at School of Technology and Applied

Sciences, Mahatma Gandhi University, Kottayam, Kerala, India. His area of research is Wireless

Sensor Networks.

Dr. Thomaskutty Mathew received his Ph.D degree in Microwave Electronics from Cochin

University of Science and Technology Cochin, India in 1997. From 1995 to 1999 he worked as a

Lecturer in Physics at Christ College, Irinjalakuda, Kerala, India. Since 1999, he is working as

Faculty in the Department of Electronics, School of Technology and Applied Science, Kochi,

Kerala, India and presently working as Reader. During the period 20 06-20 08, he worked as a Post

Doctoral Research Associate at Department of Electronics, University of Kent, Canterbury, U.K.

He is a Rerearch Guide in Electronics, Mahatma Gandhi University, Kottayam, Kerala, India. His

current area of research are : Microstrip Antennas, Radar Cross Section, RFID, Wireless Sensor

Networks etc. He is a member of IEEE Antennas and propagation society and IET (U.K).

