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 Multipath routing is to distribute the incoming traffic load among available 

paths between source and destination hosts. Instead of using the single best 

path, multipath scheme can avoid the congested path. Equal Cost Multi-Path 

(ECMP) performs the static traffic splitting based on some tuples of the 

packet headers. The limitation of ECMP does not consider the network 

parameters such as bandwidth and delay. Unlike the traditional networks, 

Software-Defined Network (SDN) has many advantages to support dynamic 

multipath forwarding due to its special characteristics, such as separation of 

control and data planes, global centralized control, and programmability of 

network behavior. In this paper, we propose a new architecture design for 

dynamic multipath-based traffic management approach in the SDN, which 

comprises of five components: detecting long (elephant) flow, computing 

shortest paths, estimating end-to-end delay and bandwidth utilization, 

calculating least cost path and rerouting traffic flow from the ongoing path to 

the best path. The simulation environment is created through the usage of 

Mininet emulator and ONOS controller. The evaluation outcomes show that 

the proposed traffic management method outperforms the ECMP and 

reactive forwarding method for both TCP and UDP traffic. 
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1. INTRODUCTION  

New technologies have changed because the nature of networking infrastructure has been more and 

more complicated. For example, the cloud computing and massive data centers demands have made effective 

networking much more complex. To adapt to these requests, network administrators need their systems to be 

smarter and they need to have the capacity to better control and manage them. Accordingly, software-defined 

networks (SDN) become the new emerging infrastructure to address these issues. 

The software-defined network (SDN) architecture, which separates the data forwarding layer and 

control layer, permits network administrators to manage the network services though abstraction of 

functionality with an external entity (controller), which can alter the forwarding behavior of the network 

components specifically. Since the SDN is a network infrastructure with high adaptability, network operators 

can manage greatly the SDN-enabled switches by the programmability. Due to the combination of 

virtualization and solidification, network operation costs can be eliminated, by optimizing resource usage and 

decoupling between control and data planes through centralization. 

OpenFlow [1] exchanges control data of network traffic between the data forwarding devices (such 

as switches and routers) and network operators. In an OpenFlow network, the OpenFlow controller manages 

routing decisions instead of the forwarding devices, as in traditional network. Therefore, the utilization of 
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forwarding devices CPU usage can then be saved for faster packet processing and other functions. 

Administrators can drive with the SDN controllers to more implicitly run the networks.  

Most of conventional routing protocols are enhanced to choose a default single shortest path that can 

cause significant resource underutilization in multi-rooted tree topologies. To address the limitation of single 

shortest path problem, Equal Cost Multi-Path (ECMP) [2] approach has been proposed. ECMP is utilized as 

multipath algorithm in data center networks, where a new incoming flow between a pair of hosts is routed 

over one candidate shortest path among available paths, which is chosen by computing the hashing of some 

attributes of header fields. With ECMP, two long flows can collide being routed over the same output port of 

the switch initiating hot-spots in the network. As a result, the network throughput degradation and the latency 

of path travel across the congested link increases, increasing the flow completion time (FCT). 

The SDN controller gathers the network statistics from the switches periodically and determines 

whether congestion happens. Depending on the congestion point, current and new flows are redirected to 

least load path [3-6]. As described in [3-6], when a particular link utilization exceeds a certain threshold, the 

existing flow is rerouted to least load link. In this study, controller collects switch ports statistics and poll at 

regular intervals of time by using OpenFlow statistics request and reply messages. The controller uses the 

shortest path algorithm. When congestion occurs, it can reroute some flows to lessen loaded paths. In [3–6], 

the proposed schemes are not differentiated long (elephant) flow and short (mice) flow. In general, there are 

two terms in flow size as elephant flow and mice flow. Elephant flow means long flow, which carries a large 

amount data and consumes many network resources, such as VM migration. Mice flow means small flow, 

which carries a small amount of data such as web surfing. To become efficient traffic management, SDN 

controller only needs to consider on the elephant flows that have a great incurs for the network performance. 

A large number of mice flows come and go too fast to wait the flow entries installation according to 

controller’s policy. Therefore, differentiating elephant and mice flow is critical to make the optimized routing 

policy for various types of traffic flows [7]. In addition, [4, 6] can be applied only for UDP traffic flows. 

Authors in [8] proposed a local re-routing approach that considers the idea of flow classification 

whether these are elephants or mice. The elephant flow is marked when the flow size is at least 100kB. In the 

event of congestion, only the elephant flows are re-routed while the mice flows are allowed to proceed. 

In addition, the redirecting is applied locally at the congested hop or before one instead of redirecting the 

elephant flows beginning from the sender. To calculate the least load path between any pair of end hosts, 

port statistics are gathered by the controller from all the connected OpenFlow switches. When the link load 

exceeds 75% of link capacity, the link is identified as the congested path and elephant flow is rerouted to the 

least load path. Hedera [9] is a flow scheduling scheme based on fat-tree networks to solve ECMP flow 

collision problem. The per-flow statistics are collected periodically at the edge switches to mark elephant 

flows. To place the elephant flow from congested path to less active flows path, it compares two algorithms: 

Global First Fit and Simulated Annealing. Although Hedera outperforms than ECMP, it has poor scalability 

due to collect per flow statistics periodically from SDN controller. The proposed schemes in [5, 6] incurs 

poor scalability and overhead in terms of messages for collecting per table, per flow and per port statics in 

every pair of end-hosts periodically. In [10], our previous study only focuses on end-to-end delay and 

elephant flow is rerouted to the least delay path. This study can handle only TCP traffic flow and simulation 

environment is based on simple topology, not fat-tree. In this paper, our proposed method can adapt in also 

fat-tree topology and handles both TCP and UDP traffic at the same time. Most of the studies on flow 

re-routing have focused on bandwidth utilization (current load of the network); however, they do not consider 

network latency (end-to-end delay) problem. When the network has high latency, data transmission time will 

take a long time. Long data transmission time causes bottlenecks in the network nodes. Therefore, this paper 

mainly focuses on not only bandwidth utilization but also network latency to tackle the congestion problem. 

In this paper, we propose a new traffic management method that redirects the elephant flows from 

the ongoing path to the least cost path by measuring end-to-end delay and bandwidth utilization. There are 

two main tasks in our proposed method. The first task is to differentiate elephant flow and mice flow. 

Second, when the new flow becomes elephant flow, it is rerouted to the least cost path. Otherwise the route 

decision for new flow is made by reactive forwarding method [11] which is a default application in 

ONOS [12] controller. The goals of our study are as follows: 

- To design an effective traffic re-scheduling scheme in SDN by estimating end-to-end delays and 

bandwidth utilization in order to avoid link congestion. 

- To improve network throughput and to reduce flow completion time (FCT) by rerouting elephant flows, 

which have an impact on network performance over a period of time, from ongoing path to least cost 

path. 
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Moreover, we test and evaluate the functionality of flow management scheme in k=4, three-layer 

fat-tree topology which is commonly used in data center network. The experimental result trend proves that 

the proposed method can give advantages in the several scenarios as compared with ECMP and the reactive 

forwarding method. 

 

 

2. BACKGROUND THEORY 

In this section, we describe the core concept of SDN and traffic rerouting to tackle the network 

congestion problem. 
 

2.1. Software-defined networking (SDN) 

The rapid adoption of OpenFlow [1] and Software Defined Networking (SDN) has introduced 

significant changes in today’s enterprise datacenter network architectures and revenue models. In the 

OpenFlow network, each network device maintains a flow table. OpenFlow match and handling the packets 

of traffic flow by controller defined rules or pre-defined rules. A basic rule of OpenFlow includes match 

fields (some tuples of header), counters and actions. Every first packet of new arrival flow has to match with 

matching fields of flow table, and the matching domain fields consists of, Ethernet layer to transport layer, 

eg; the source/destination MAC address, protocol type and source/destination IP address, or 

source/destination TCP/UDP port number, etc. When packets successfully match a rule, it will refresh the 

corresponding statistical data fields (counters) of flow rule firstly, and then take corresponding actions of the 

rule. Only OpenFlow version 1.0 has a single flow table and above has pipeline of multiple flow tables. 

When a packet is in the pipeline of the final flow table, the packet can be forwarded to an output port, 

modified a particular field the packet, dropped the packets, etc. 

Compared with the traditional network, SDN network basically has the following advantages: (1) 

SDN controller can gather the state statistics of the whole network, and make network traffic admission 

control and dynamic routing in real time with a global network view, (2) SDN makes network administration 

with software programmability, and greatly simplifies the network innovation with better adaptability [13]. 

In general, data forwarding in SDN can be accomplished in a reactive or proactive way. In reactive 

way, the forwarding decision is made whenever a new flow arrives at each switch [11] along the path. 

The main process is that when the new flow arrives at the switch, the switch sends a copy of the first packet 

header from new flow to the controller and then the controller installs forwarding rule to the switch. 

Proactive forwarding, installs flow rules to switches along the path proactively, can reduce the 

communication time between controllers and switches. 

 

2.2. Flow re-routing (or) per-flow multipath routing 

Fat-tree topology is a well-known data center network topology, which contains various paths 

between end hosts, so it can give higher accessible data transmission than a single path tree with a similar 

number of nodes. It is normally a 3-layer various leveled tree that comprises of switches on the edge, 

aggregate, and core layers. Among multiple links, congestion problem can still occur when one or more 

elephant flows which same have output ports across the same link as shown in Figure 1. 

Therefore, maximizing network throughput and minimizing transferring latency are two critical targets. 

In order to achieve them, multiple flows through a bottleneck switch towards a common destination can be 

diverted through the multi-paths. The main concept of flow re-routing, as shown in Figure 2, is that the 

existing flow or new flow is re-rerouted from congested path to uncongested path in order to improve 

network performance. 

 

 

  
 

Figure 1. Flow collision problem of ECMP 

 

Figure 2. Example of flow re-routing 
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3. SYSTEM DESIGN 

This section describes the overall design of the proposed flow management method as shown in 

Figure 3. There are five main components in proposed rerouting method. 
 
 

 
 

Figure 3. Architecture design 
 

 

3.1.   Detecting elephant flow 

Elephant detection can be done in several ways: maintaining and polling per-flow statistics, packet 

sampling, and end-host based monitoring. Per-flow statistics as used in Hedera [9] has high accuracy at the 

cost of poor scalability in commodity switches. End-host based monitoring such as Mahout [14] overcomes 

the scalability issue, though it has not been widely adopted. In our current design, we use packet sampling, 

since it is widely used in practice with mature switch support such as sFlow [15]. Since the architecture of 

sFlow is based on collector and agents, sflow agents are needed to embed in network devices (eg. Open 

vSwitch) to be monitored. Two threshold values and two flow definitions are implemented in sFlow collector 

as shown in Figure 4. Every sFlow agents send the continuous streams of sFlow datagrams to collector. 

The sFlow datagram contains encapsulation and header information of sampled packet from individual flows. 

The collector computes the flow rate of sFlow datagrams in every second. If the flow rate exceeds the 

predefined threshold (10% of link capacity), the collector generates the elephant flow event and converts 

header information into metrics based on flow definition. In proposed architecture, there are two flow 

definitions, as we need to detect TCP and UDP elephant flows. The output metrics are represented by JSON 

format which consisting of attribute-value pairs. According to the flow definition as shown in Figure 4, 

the output information of elephant flow includes source and destination MAC addresses, IP addresses, 

TCP/UDP port numbers and the names associated with the ports of a link. 

In order to access the elephant flow information from elephant flow rerouting application, the sFlow 

REST API: /events/json which is used to filter the threshold exceed events, is called periodically. In the 

proposed method, the REST API calling interval is set 1 second. The new elephant flow event can be defined 

in rerouting application by comparing the time stamp values of elephant flow events since sFlow REST API 

provides flow information with timestamp values. The output metrics are represented by JSON format which 

consisting of attribute-value pairs. According to the flow definition as shown in Figure 4, the output 

information of elephant flow includes source and destination MAC addresses, IP addresses, TCP/UDP port 

numbers and the names associated with the ports of a link and the value means the flow rate will be 

calculated in bytes. 
 

 

 
 

Figure 4. Flow definitions for TCP and UDP flows 
 

 

3.2.   Computing shortest paths  
To find available shortest paths between source/destination pair where elephant flow happens, 

ONOS [12] controller provides DijkstraGraphSearch as a module. Its primary usage is in TopologyManager 

and flow management application invokes it associated with source/destination MAC addresses whenever 

elephant flow is detected. 
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3.3.   Estimating end-to-end delay and bandwidth utilization 

After computing available shortest paths between the source and destination hosts, the end-to-end 

path delay and bandwidth utilization are needed to measure for these paths. 

 

3.3.1. Estimating end-to-end delay 

End-to-end delay estimation comprises two main tasks: (1) probe packet creation and (2) delay 

estimation. In probe packet creation, each probe includes two parts as shown in Figure 6: header and payload. 

The header field includes faked source/destination (src/dst) MAC addresses and Ethernet type value 

(0x8888). Here, the faked src/dst MAC addresses for probes are generated by unique identifier (UID) value. 

Instead of traditional packet encapsulation, the time stamp (probe packet sent time) value is encapsulated in 

payload field of probe. Figure 5 show the delay measurement scenario. 

 

MACProbe = UID (1) 
 

 

 
 

Figure 5. Delay measurement scenario 
 

 

After probe packet creation, the first probe (P1) with faked MAC address as shown in (1) is sent 

from controller, through the path and back to the controller. After receiving first probe, the probe sent time is 

extracted from payload. The total time (Ttotal) can be computed by differentiating probe sent time (Tsent) from 

probe receive time (Treceive) as shown in (2). 
 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑟𝑒𝑐𝑒𝑖𝑣𝑒 − 𝑇𝑠𝑒𝑛𝑡 (2) 
 

Since Ttotal contains the one-way-delay from controller to source node (OWDC0-Source), time taken 

from source node to destination (Tend-to-end) node, and destination node to controller (OWDC0-Destination). 

Therefore Tend-to-end can be derived as follows: 
 

𝑇𝑡𝑜𝑡𝑎𝑙             = 𝑂𝑊𝐷𝐶0−𝑆𝑜𝑢𝑟𝑐𝑒 + 𝑇𝑒𝑛𝑑−𝑡𝑜−𝑒𝑛𝑑 + 𝑂𝑊𝐷𝐶0−𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛  
𝑇𝑒𝑛𝑑−𝑡𝑜−𝑒𝑛𝑑 = 𝑇𝑡𝑜𝑡𝑎𝑙 − 𝑂𝑊𝐷𝐶0−𝑆𝑜𝑢𝑟𝑐𝑒 − 𝑂𝑊𝐷𝐶0−𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (3) 

 

Where the one-way-delays for OWDC0-Source and OWDC0-Destination are given as: 
 

𝑂𝑊𝐷𝐶0−𝑆𝑜𝑢𝑟𝑐𝑒 =
𝑅𝑇𝑇𝐶0−𝑆𝑜𝑢𝑟𝑐𝑒

2
 , 𝑂𝑊𝐷𝐶0−𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =

𝑅𝑇𝑇𝐶0−𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

2
  (4) 

 

Where (RTTC0-Source) is the round-trip-time between controller and source switch. The next probe packet (P2) 

is sent out from controller to source switch. As there is no matched rule in source switch for this probe, 

the source switch sends it back to controller. The RTTC0-Source can be retrieved from this probe P2. The other 

probe (P3) is also sent out to destination switch in similar way to measure the round-trip-time between 

controller and destination switch RTTC0-Destination. 
 

 

 
 

Figure 6. Probe packet frame 
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3.3.2. Estimating bandwidth utilization 

To estimate the bandwidth utilization, we compute traffic load statistics of each links for specific 

path. Total sent bytes (sent bytes) and total receive bytes (receive bytes) of specific port which is associated 

with the device and port for link represent the total transmission bytes (or) the current bandwidth usage. 

The calculation of current total bytes (L) for source port and destination port of each link can be derived as 

follows: 

 

L = src_port_statistics.bytesReceived + src_port statistics.bytesSent+ 

Dst_port_statistics.bytesReceived + dst_port_statistics.bytesSent (5) 

 

By applying (5) repeatedly until there is no next link in path, the total bytes of specific path can be 

calculated. Then the total bandwidth utilization bk can be calculated as follows: 

 

𝑏𝑘 = ∑
𝐿𝑖

𝜇𝑖

𝑁
𝑖   (6) 

 

Where Li is total bytes of each link in path pk, 𝐿𝑖 ∈ 𝑝𝑘 and 𝑝𝑘 ∈ 𝑃, and 𝜇𝑖 is the link capacity. 

 

 

3.4.   Calculating least cost path 

In order to compute the best path, the proposed flow management method uses end-to-end path 

delay and bandwidth utilization. In this paper, we apply two ways to calculate least cost path based on flow 

type. If the elephant flow is TCP flow type, we choose the best path with the least minimum delay among 

available shortest paths. If the elephant flow is UDP type, the cost of each path 𝑝𝑘 ∈ 𝑃 can be computed as 

follows: 

 

pk = dk + bk  (7) 

 

Where dk is average delay of path pk, bk is the total bandwidth utilization cost of 𝐿𝑖 ∈ 𝑝𝑘 as shown in (6). 

The proposed flow management method selects the least cost path pk for UDP elephant flow in order to avoid 

congested path. 

 

3.5.   Flow rule installation 

After choosing the best path, the new flow entries are injected to respective devices through this 

path by using FlowRuleService which is provided from ONOS controller. The traffic selection fields of each 

flow entry are source MAC address, destination MAC address, protocol type and TCP/UDP ports. When the 

traffic flow rate does not exceed the threshold, the route decision and flow entries are made by using reactive 

forwarding method. As soon as the sFlow analyzer detects elephant flow, the route decision and new flow 

entries are made by proposed flow management application. The old entries which are injected from reactive 

forwarding will be removed automatically after 10 seconds in idle-timeout. In flow rule installation module, 

two main contributions are added in order to improve the performance of proposed method: (i) first, the flow 

rules placement in different tables, and (ii) second, avoiding unnecessary flow rule installation. Firstly, the 

flow rules that are generated from flow management application are mainly categorized into two: flow rules 

from delay measurement function and flow rules from rerouting function. As mentioned in previous section, 

delay measuring method is based on probing. The flow rules for probes are needed to install proactively to 

pass through the path. Figure 7 represents the scenario of flow rule placement (e.g. switch S1). In Figure 7, 

the red color box highlights the flow rules for probe packets and yellow color box highlights the flow rules 

for rerouting. If all of these flow rules are placed in one OpenFlow table “Table=0”, it makes the unnecessary 

flow matching time for rerouting. Therefore, in the proposed approach, the new flow rules for rerouting are 

defined as first priority rules because the elephant flow rerouting timely is studied as an important fact for 

network performance. Therefore, the flow rules for rerouting are placed in OpenFlow table “Table=0” and 

the flow rules for probes are placed in OpenFlow table “Table=1”. Secondly, the proposed approach 

considers the condition between finding least cost path and flow rule installation functions as shown in 

Figure 8. Sometimes, the elephant flow may be existed on optimal path. For this event, the new flow rule 

installation is unnecessary and even makes an increase in packet loss rate due to unnecessary flow rule 

modification. This condition is to check whether the current flow existing path is equal to the least cost path. 

If it is equal, the flow rerouting action does not need to take because the flow is already taken on the best 

path. If not, the elephant flow is needed to reroute to the least cost path. 
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Figure 7. Flow rule placement scenario 

 
 

Figure 8. Avoiding unnecessary flow rule installation 

 

 

4. PERFORMANCE EVALUATION 

In this section, evaluation environment measurements and results are described. Tests are conducted 

by Mininet on Ubuntu host with the ONOS OpenFlow controller. In environment, two laptop PCs are used 

for evaluating the performance results. The first PC (i.e., Core i5-5200U CPU @ 2.20GHZ with RAM 8GB, 

Ubuntu 14.04 on Oracle VM VirtualBox) serves as ONOS controller. The second Laptop PC (i.e., Core i5-

5200U CPU @ 2.20GHZ with RAM 8GB, Ubuntu 14.04) serves as mininet emulator and sFlow-rt collector. 

In this study, the simulation experiments were conducted by the Mininet emulator [16]. Mininet is used to 

model fat tree topology as shown in Figure 9. To evaluate the proposed method, k=4 fat-tree network with 20 

switches and 16 hosts is built. The proposed elephant flow management application has been developed using 

the ONOS controller version 1.8 and OpenFlow version 1.3. Besides, Iperf [17] is used to generate both TCP 

and UDP traffic for simulations and to measure the network parameters: 

- Throughput: successful data transfer rate (in Mbps), and 

- Flow completion time (FCT): time difference between the time when the first packet of a flow leaves the 

sourceand the time when the last packet of the same flow arrives at the destination (in seconds) [18]. 

 

 

 
 

Figure 9. k=4, fat-tree topology 

 

 

4.1.   Simulation environment and measurement 

In this measurement, we use traffic pattern random type, which is a host sends the amount of traffic 

to any other host in the network with uniform probability. For TCP traffic, every elephant flow size is 1 GB. 

For UDP traffic, we set the target file transfer rate 100 Mbps and run time duration 100 seconds. In topology 

setting as shown in Table 1, the edge link speed is set 300 Mbps, the aggregation link speed is set 100 Mbps 

and the core link speed is set 200 Mbps. The delay range is 20~95.7 ms and delay difference between paths is 

ranging from 15 ms to 80 ms. In sFlow setting as shown in Table 2, the elephant detection threshold is >=30 

Mbps (10% of edge links). There are two sampling in sFlow, packet sampling and counter sampling. Packet 
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sampling consists of statistical data gathered from individual flows and counter sampling is polling of 

counters to gather interface data. In this paper, we use packet sampling rate: 1-in-300 packets and counter 

polling interval: 10 seconds. 

 
 

Table 1. Topology setting Table 2. sFlow setting 

Parameters Values 

Link speed  200 Mbps :100 Mbps :300 Mbps 
Link Delay (20~95.7) ms 

Delay Difference (15~30) ms 
 

Parameters Values 

Elephant Flow Detection Threshold >= 30 Mbps 
Sampling Rate 1-in-300 packets 

Polling Inverval 5seconds 
 

 

 

5. RESULT AND ANALYSIS 

The results of the proposed scheme are compared with ECMP and reactive forwarding. In Figure 10, 

the elephant flow management method has been tested the average throughput improvement 19.18%~43.03% 

than ECMP and 33.62%~53.13% than reactive forwarding method. This is because the proposed elephant 

flow rerouting method reroutes the elephant flows to the least cost path based on types of traffic while ECMP 

chooses the route based on hashing of header values and the reactive forwarding method only uses the 

shortest paths for all traffic flows. When the number of elephant flow is 1, the proposed flow management 

method can schedule elephant flow in a way that provides the maximum throughput. Then the throughput of 

all algorithms decreases while the number of elephant flow increases. However, the proposed algorithm 

keeps the higher average throughput under more than one elephant flow. Figure 11 shows the average FCT 

per elephant flow in random traffic. In general, the FCT goes higher with the random number of elephant’s 

flows in network increases. The proposed method has FCT reduction 16.83%~44.72% rather than ECMP and 

28.84%~45.54% rather than the rerouting forwarding method. When the number of elephant flow reaches to 

12, the average FCT of the proposed method is 132.52 seconds and the average FCT of ECMP and reactive 

forwarding is 165.35 and 249.93 seconds respectively. Figure 12 shows the average throughput per UDP 

elephant flow in random traffic. The number of elephant flows is generated from 1 to 12. The proposed 

method has throughput improvement 22.85%~45.7% rather than ECMP and 34.24%~52.50% rather than 

reactive forwarding method. According to the above results and verification, our proposed method can 

improve the network performance in terms of throughput and FCT for both TCP and UDP flow types. 
 

 

  
 

Figure 10. Average throughput per TCP elephant flow 
 

Figure 11. Average FCT per TCP elephant flow 
 

 

 
 

Figure 12. Average throughput per UDP elephant flow 
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6. CONCLUSION 

In this paper, a new dynamic flow management scheme for fat-tree network is presented which 

differentiates elephant flows and re-scheduling to least cost path for both TCP and UDP traffic. Making use 

of SDN infrastructure and sFlow engine, our proposed approach can detect and re-reschedule TCP/UDP 

elephant flows using end-to-end path delay and bandwidth utilization, while mice flows are transmitted via 

reactive forwarding method. As the verification results, our proposed method improves average throughput 

and FCT for elephant flows in comparison with traditional ECMP and reactive forwarding. However, due to 

the requirement of Mininet emulator for modeling SDN fat-tree infrastructure, we encourage to research and 

evaluate on the realistic SDN testbed. 
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