
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 9, No. 4, August 2019, pp. 3203~3211

ISSN: 2088-8708, DOI: 10.11591/ijece.v9i4.pp3203-3211 3203

Journal homepage: http://iaescore.com/journals/index.php/IJECE

Traffic management with elephant flow detection

in software defined networks (SDN)

Hnin Thiri Zaw1
, Aung Htein Maw2

1University of Computer Studies, Myanmar
2University of Information Technology, Myanmar

Article Info ABSTRACT

Article history:

Received Jul 23, 2018

Revised Mar 23, 2019

Accepted Apr 3, 2019

 Multipath routing is to distribute the incoming traffic load among available

paths between source and destination hosts. Instead of using the single best

path, multipath scheme can avoid the congested path. Equal Cost Multi-Path

(ECMP) performs the static traffic splitting based on some tuples of the

packet headers. The limitation of ECMP does not consider the network

parameters such as bandwidth and delay. Unlike the traditional networks,

Software-Defined Network (SDN) has many advantages to support dynamic

multipath forwarding due to its special characteristics, such as separation of

control and data planes, global centralized control, and programmability of

network behavior. In this paper, we propose a new architecture design for

dynamic multipath-based traffic management approach in the SDN, which

comprises of five components: detecting long (elephant) flow, computing

shortest paths, estimating end-to-end delay and bandwidth utilization,

calculating least cost path and rerouting traffic flow from the ongoing path to

the best path. The simulation environment is created through the usage of

Mininet emulator and ONOS controller. The evaluation outcomes show that

the proposed traffic management method outperforms the ECMP and

reactive forwarding method for both TCP and UDP traffic.

Keywords:

Bandwidth utilization

Elephant flow

End-to-end delay

Multipath

SDN

sFlow

Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Hnin Thiri Zaw,

University of Computer Studies,

No. (4) Main Street 4, Yangon, Myanmar.

Email: h.thirizawucsy@ucsy.edu.mm

1. INTRODUCTION

New technologies have changed because the nature of networking infrastructure has been more and

more complicated. For example, the cloud computing and massive data centers demands have made effective

networking much more complex. To adapt to these requests, network administrators need their systems to be

smarter and they need to have the capacity to better control and manage them. Accordingly, software-defined

networks (SDN) become the new emerging infrastructure to address these issues.

The software-defined network (SDN) architecture, which separates the data forwarding layer and

control layer, permits network administrators to manage the network services though abstraction of

functionality with an external entity (controller), which can alter the forwarding behavior of the network

components specifically. Since the SDN is a network infrastructure with high adaptability, network operators

can manage greatly the SDN-enabled switches by the programmability. Due to the combination of

virtualization and solidification, network operation costs can be eliminated, by optimizing resource usage and

decoupling between control and data planes through centralization.

OpenFlow [1] exchanges control data of network traffic between the data forwarding devices (such

as switches and routers) and network operators. In an OpenFlow network, the OpenFlow controller manages

routing decisions instead of the forwarding devices, as in traditional network. Therefore, the utilization of

mailto:h.thirizawucsy@ucsy.edu.mm

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 : 3203 - 3211

3204

forwarding devices CPU usage can then be saved for faster packet processing and other functions.

Administrators can drive with the SDN controllers to more implicitly run the networks.

Most of conventional routing protocols are enhanced to choose a default single shortest path that can

cause significant resource underutilization in multi-rooted tree topologies. To address the limitation of single

shortest path problem, Equal Cost Multi-Path (ECMP) [2] approach has been proposed. ECMP is utilized as

multipath algorithm in data center networks, where a new incoming flow between a pair of hosts is routed

over one candidate shortest path among available paths, which is chosen by computing the hashing of some

attributes of header fields. With ECMP, two long flows can collide being routed over the same output port of

the switch initiating hot-spots in the network. As a result, the network throughput degradation and the latency

of path travel across the congested link increases, increasing the flow completion time (FCT).

The SDN controller gathers the network statistics from the switches periodically and determines

whether congestion happens. Depending on the congestion point, current and new flows are redirected to

least load path [3-6]. As described in [3-6], when a particular link utilization exceeds a certain threshold, the

existing flow is rerouted to least load link. In this study, controller collects switch ports statistics and poll at

regular intervals of time by using OpenFlow statistics request and reply messages. The controller uses the

shortest path algorithm. When congestion occurs, it can reroute some flows to lessen loaded paths. In [3–6],

the proposed schemes are not differentiated long (elephant) flow and short (mice) flow. In general, there are

two terms in flow size as elephant flow and mice flow. Elephant flow means long flow, which carries a large

amount data and consumes many network resources, such as VM migration. Mice flow means small flow,

which carries a small amount of data such as web surfing. To become efficient traffic management, SDN

controller only needs to consider on the elephant flows that have a great incurs for the network performance.

A large number of mice flows come and go too fast to wait the flow entries installation according to

controller’s policy. Therefore, differentiating elephant and mice flow is critical to make the optimized routing

policy for various types of traffic flows [7]. In addition, [4, 6] can be applied only for UDP traffic flows.

Authors in [8] proposed a local re-routing approach that considers the idea of flow classification

whether these are elephants or mice. The elephant flow is marked when the flow size is at least 100kB. In the

event of congestion, only the elephant flows are re-routed while the mice flows are allowed to proceed.

In addition, the redirecting is applied locally at the congested hop or before one instead of redirecting the

elephant flows beginning from the sender. To calculate the least load path between any pair of end hosts,

port statistics are gathered by the controller from all the connected OpenFlow switches. When the link load

exceeds 75% of link capacity, the link is identified as the congested path and elephant flow is rerouted to the

least load path. Hedera [9] is a flow scheduling scheme based on fat-tree networks to solve ECMP flow

collision problem. The per-flow statistics are collected periodically at the edge switches to mark elephant

flows. To place the elephant flow from congested path to less active flows path, it compares two algorithms:

Global First Fit and Simulated Annealing. Although Hedera outperforms than ECMP, it has poor scalability

due to collect per flow statistics periodically from SDN controller. The proposed schemes in [5, 6] incurs

poor scalability and overhead in terms of messages for collecting per table, per flow and per port statics in

every pair of end-hosts periodically. In [10], our previous study only focuses on end-to-end delay and

elephant flow is rerouted to the least delay path. This study can handle only TCP traffic flow and simulation

environment is based on simple topology, not fat-tree. In this paper, our proposed method can adapt in also

fat-tree topology and handles both TCP and UDP traffic at the same time. Most of the studies on flow

re-routing have focused on bandwidth utilization (current load of the network); however, they do not consider

network latency (end-to-end delay) problem. When the network has high latency, data transmission time will

take a long time. Long data transmission time causes bottlenecks in the network nodes. Therefore, this paper

mainly focuses on not only bandwidth utilization but also network latency to tackle the congestion problem.

In this paper, we propose a new traffic management method that redirects the elephant flows from

the ongoing path to the least cost path by measuring end-to-end delay and bandwidth utilization. There are

two main tasks in our proposed method. The first task is to differentiate elephant flow and mice flow.

Second, when the new flow becomes elephant flow, it is rerouted to the least cost path. Otherwise the route

decision for new flow is made by reactive forwarding method [11] which is a default application in

ONOS [12] controller. The goals of our study are as follows:

- To design an effective traffic re-scheduling scheme in SDN by estimating end-to-end delays and

bandwidth utilization in order to avoid link congestion.

- To improve network throughput and to reduce flow completion time (FCT) by rerouting elephant flows,

which have an impact on network performance over a period of time, from ongoing path to least cost

path.

Int J Elec & Comp Eng ISSN: 2088-8708

Traffic management with elephant flow detection in software defined networks (SDN) (Hnin Thiri Zaw)

3205

Moreover, we test and evaluate the functionality of flow management scheme in k=4, three-layer

fat-tree topology which is commonly used in data center network. The experimental result trend proves that

the proposed method can give advantages in the several scenarios as compared with ECMP and the reactive

forwarding method.

2. BACKGROUND THEORY

In this section, we describe the core concept of SDN and traffic rerouting to tackle the network

congestion problem.

2.1. Software-defined networking (SDN)

The rapid adoption of OpenFlow [1] and Software Defined Networking (SDN) has introduced

significant changes in today’s enterprise datacenter network architectures and revenue models. In the

OpenFlow network, each network device maintains a flow table. OpenFlow match and handling the packets

of traffic flow by controller defined rules or pre-defined rules. A basic rule of OpenFlow includes match

fields (some tuples of header), counters and actions. Every first packet of new arrival flow has to match with

matching fields of flow table, and the matching domain fields consists of, Ethernet layer to transport layer,

eg; the source/destination MAC address, protocol type and source/destination IP address, or

source/destination TCP/UDP port number, etc. When packets successfully match a rule, it will refresh the

corresponding statistical data fields (counters) of flow rule firstly, and then take corresponding actions of the

rule. Only OpenFlow version 1.0 has a single flow table and above has pipeline of multiple flow tables.

When a packet is in the pipeline of the final flow table, the packet can be forwarded to an output port,

modified a particular field the packet, dropped the packets, etc.

Compared with the traditional network, SDN network basically has the following advantages: (1)

SDN controller can gather the state statistics of the whole network, and make network traffic admission

control and dynamic routing in real time with a global network view, (2) SDN makes network administration

with software programmability, and greatly simplifies the network innovation with better adaptability [13].

In general, data forwarding in SDN can be accomplished in a reactive or proactive way. In reactive

way, the forwarding decision is made whenever a new flow arrives at each switch [11] along the path.

The main process is that when the new flow arrives at the switch, the switch sends a copy of the first packet

header from new flow to the controller and then the controller installs forwarding rule to the switch.

Proactive forwarding, installs flow rules to switches along the path proactively, can reduce the

communication time between controllers and switches.

2.2. Flow re-routing (or) per-flow multipath routing

Fat-tree topology is a well-known data center network topology, which contains various paths

between end hosts, so it can give higher accessible data transmission than a single path tree with a similar

number of nodes. It is normally a 3-layer various leveled tree that comprises of switches on the edge,

aggregate, and core layers. Among multiple links, congestion problem can still occur when one or more

elephant flows which same have output ports across the same link as shown in Figure 1.

Therefore, maximizing network throughput and minimizing transferring latency are two critical targets.

In order to achieve them, multiple flows through a bottleneck switch towards a common destination can be

diverted through the multi-paths. The main concept of flow re-routing, as shown in Figure 2, is that the

existing flow or new flow is re-rerouted from congested path to uncongested path in order to improve

network performance.

Figure 1. Flow collision problem of ECMP

Figure 2. Example of flow re-routing

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 : 3203 - 3211

3206

3. SYSTEM DESIGN

This section describes the overall design of the proposed flow management method as shown in

Figure 3. There are five main components in proposed rerouting method.

Figure 3. Architecture design

3.1. Detecting elephant flow

Elephant detection can be done in several ways: maintaining and polling per-flow statistics, packet

sampling, and end-host based monitoring. Per-flow statistics as used in Hedera [9] has high accuracy at the

cost of poor scalability in commodity switches. End-host based monitoring such as Mahout [14] overcomes

the scalability issue, though it has not been widely adopted. In our current design, we use packet sampling,

since it is widely used in practice with mature switch support such as sFlow [15]. Since the architecture of

sFlow is based on collector and agents, sflow agents are needed to embed in network devices (eg. Open

vSwitch) to be monitored. Two threshold values and two flow definitions are implemented in sFlow collector

as shown in Figure 4. Every sFlow agents send the continuous streams of sFlow datagrams to collector.

The sFlow datagram contains encapsulation and header information of sampled packet from individual flows.

The collector computes the flow rate of sFlow datagrams in every second. If the flow rate exceeds the

predefined threshold (10% of link capacity), the collector generates the elephant flow event and converts

header information into metrics based on flow definition. In proposed architecture, there are two flow

definitions, as we need to detect TCP and UDP elephant flows. The output metrics are represented by JSON

format which consisting of attribute-value pairs. According to the flow definition as shown in Figure 4,

the output information of elephant flow includes source and destination MAC addresses, IP addresses,

TCP/UDP port numbers and the names associated with the ports of a link.

In order to access the elephant flow information from elephant flow rerouting application, the sFlow

REST API: /events/json which is used to filter the threshold exceed events, is called periodically. In the

proposed method, the REST API calling interval is set 1 second. The new elephant flow event can be defined

in rerouting application by comparing the time stamp values of elephant flow events since sFlow REST API

provides flow information with timestamp values. The output metrics are represented by JSON format which

consisting of attribute-value pairs. According to the flow definition as shown in Figure 4, the output

information of elephant flow includes source and destination MAC addresses, IP addresses, TCP/UDP port

numbers and the names associated with the ports of a link and the value means the flow rate will be

calculated in bytes.

Figure 4. Flow definitions for TCP and UDP flows

3.2. Computing shortest paths
To find available shortest paths between source/destination pair where elephant flow happens,

ONOS [12] controller provides DijkstraGraphSearch as a module. Its primary usage is in TopologyManager

and flow management application invokes it associated with source/destination MAC addresses whenever

elephant flow is detected.

Int J Elec & Comp Eng ISSN: 2088-8708

Traffic management with elephant flow detection in software defined networks (SDN) (Hnin Thiri Zaw)

3207

3.3. Estimating end-to-end delay and bandwidth utilization

After computing available shortest paths between the source and destination hosts, the end-to-end

path delay and bandwidth utilization are needed to measure for these paths.

3.3.1. Estimating end-to-end delay

End-to-end delay estimation comprises two main tasks: (1) probe packet creation and (2) delay

estimation. In probe packet creation, each probe includes two parts as shown in Figure 6: header and payload.

The header field includes faked source/destination (src/dst) MAC addresses and Ethernet type value

(0x8888). Here, the faked src/dst MAC addresses for probes are generated by unique identifier (UID) value.

Instead of traditional packet encapsulation, the time stamp (probe packet sent time) value is encapsulated in

payload field of probe. Figure 5 show the delay measurement scenario.

MACProbe = UID (1)

Figure 5. Delay measurement scenario

After probe packet creation, the first probe (P1) with faked MAC address as shown in (1) is sent

from controller, through the path and back to the controller. After receiving first probe, the probe sent time is

extracted from payload. The total time (Ttotal) can be computed by differentiating probe sent time (Tsent) from

probe receive time (Treceive) as shown in (2).

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑟𝑒𝑐𝑒𝑖𝑣𝑒 − 𝑇𝑠𝑒𝑛𝑡 (2)

Since Ttotal contains the one-way-delay from controller to source node (OWDC0-Source), time taken

from source node to destination (Tend-to-end) node, and destination node to controller (OWDC0-Destination).

Therefore Tend-to-end can be derived as follows:

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑂𝑊𝐷𝐶0−𝑆𝑜𝑢𝑟𝑐𝑒 + 𝑇𝑒𝑛𝑑−𝑡𝑜−𝑒𝑛𝑑 + 𝑂𝑊𝐷𝐶0−𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
𝑇𝑒𝑛𝑑−𝑡𝑜−𝑒𝑛𝑑 = 𝑇𝑡𝑜𝑡𝑎𝑙 − 𝑂𝑊𝐷𝐶0−𝑆𝑜𝑢𝑟𝑐𝑒 − 𝑂𝑊𝐷𝐶0−𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (3)

Where the one-way-delays for OWDC0-Source and OWDC0-Destination are given as:

𝑂𝑊𝐷𝐶0−𝑆𝑜𝑢𝑟𝑐𝑒 =
𝑅𝑇𝑇𝐶0−𝑆𝑜𝑢𝑟𝑐𝑒

2
 , 𝑂𝑊𝐷𝐶0−𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =

𝑅𝑇𝑇𝐶0−𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

2
 (4)

Where (RTTC0-Source) is the round-trip-time between controller and source switch. The next probe packet (P2)

is sent out from controller to source switch. As there is no matched rule in source switch for this probe,

the source switch sends it back to controller. The RTTC0-Source can be retrieved from this probe P2. The other

probe (P3) is also sent out to destination switch in similar way to measure the round-trip-time between

controller and destination switch RTTC0-Destination.

Figure 6. Probe packet frame

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 : 3203 - 3211

3208

3.3.2. Estimating bandwidth utilization

To estimate the bandwidth utilization, we compute traffic load statistics of each links for specific

path. Total sent bytes (sent bytes) and total receive bytes (receive bytes) of specific port which is associated

with the device and port for link represent the total transmission bytes (or) the current bandwidth usage.

The calculation of current total bytes (L) for source port and destination port of each link can be derived as

follows:

L = src_port_statistics.bytesReceived + src_port statistics.bytesSent+

Dst_port_statistics.bytesReceived + dst_port_statistics.bytesSent (5)

By applying (5) repeatedly until there is no next link in path, the total bytes of specific path can be

calculated. Then the total bandwidth utilization bk can be calculated as follows:

𝑏𝑘 = ∑
𝐿𝑖

𝜇𝑖

𝑁
𝑖 (6)

Where Li is total bytes of each link in path pk, 𝐿𝑖 ∈ 𝑝𝑘 and 𝑝𝑘 ∈ 𝑃, and 𝜇𝑖 is the link capacity.

3.4. Calculating least cost path

In order to compute the best path, the proposed flow management method uses end-to-end path

delay and bandwidth utilization. In this paper, we apply two ways to calculate least cost path based on flow

type. If the elephant flow is TCP flow type, we choose the best path with the least minimum delay among

available shortest paths. If the elephant flow is UDP type, the cost of each path 𝑝𝑘 ∈ 𝑃 can be computed as

follows:

pk = dk + bk (7)

Where dk is average delay of path pk, bk is the total bandwidth utilization cost of 𝐿𝑖 ∈ 𝑝𝑘 as shown in (6).

The proposed flow management method selects the least cost path pk for UDP elephant flow in order to avoid

congested path.

3.5. Flow rule installation

After choosing the best path, the new flow entries are injected to respective devices through this

path by using FlowRuleService which is provided from ONOS controller. The traffic selection fields of each

flow entry are source MAC address, destination MAC address, protocol type and TCP/UDP ports. When the

traffic flow rate does not exceed the threshold, the route decision and flow entries are made by using reactive

forwarding method. As soon as the sFlow analyzer detects elephant flow, the route decision and new flow

entries are made by proposed flow management application. The old entries which are injected from reactive

forwarding will be removed automatically after 10 seconds in idle-timeout. In flow rule installation module,

two main contributions are added in order to improve the performance of proposed method: (i) first, the flow

rules placement in different tables, and (ii) second, avoiding unnecessary flow rule installation. Firstly, the

flow rules that are generated from flow management application are mainly categorized into two: flow rules

from delay measurement function and flow rules from rerouting function. As mentioned in previous section,

delay measuring method is based on probing. The flow rules for probes are needed to install proactively to

pass through the path. Figure 7 represents the scenario of flow rule placement (e.g. switch S1). In Figure 7,

the red color box highlights the flow rules for probe packets and yellow color box highlights the flow rules

for rerouting. If all of these flow rules are placed in one OpenFlow table “Table=0”, it makes the unnecessary

flow matching time for rerouting. Therefore, in the proposed approach, the new flow rules for rerouting are

defined as first priority rules because the elephant flow rerouting timely is studied as an important fact for

network performance. Therefore, the flow rules for rerouting are placed in OpenFlow table “Table=0” and

the flow rules for probes are placed in OpenFlow table “Table=1”. Secondly, the proposed approach

considers the condition between finding least cost path and flow rule installation functions as shown in

Figure 8. Sometimes, the elephant flow may be existed on optimal path. For this event, the new flow rule

installation is unnecessary and even makes an increase in packet loss rate due to unnecessary flow rule

modification. This condition is to check whether the current flow existing path is equal to the least cost path.

If it is equal, the flow rerouting action does not need to take because the flow is already taken on the best

path. If not, the elephant flow is needed to reroute to the least cost path.

Int J Elec & Comp Eng ISSN: 2088-8708

Traffic management with elephant flow detection in software defined networks (SDN) (Hnin Thiri Zaw)

3209

Figure 7. Flow rule placement scenario

Figure 8. Avoiding unnecessary flow rule installation

4. PERFORMANCE EVALUATION

In this section, evaluation environment measurements and results are described. Tests are conducted

by Mininet on Ubuntu host with the ONOS OpenFlow controller. In environment, two laptop PCs are used

for evaluating the performance results. The first PC (i.e., Core i5-5200U CPU @ 2.20GHZ with RAM 8GB,

Ubuntu 14.04 on Oracle VM VirtualBox) serves as ONOS controller. The second Laptop PC (i.e., Core i5-

5200U CPU @ 2.20GHZ with RAM 8GB, Ubuntu 14.04) serves as mininet emulator and sFlow-rt collector.

In this study, the simulation experiments were conducted by the Mininet emulator [16]. Mininet is used to

model fat tree topology as shown in Figure 9. To evaluate the proposed method, k=4 fat-tree network with 20

switches and 16 hosts is built. The proposed elephant flow management application has been developed using

the ONOS controller version 1.8 and OpenFlow version 1.3. Besides, Iperf [17] is used to generate both TCP

and UDP traffic for simulations and to measure the network parameters:

- Throughput: successful data transfer rate (in Mbps), and

- Flow completion time (FCT): time difference between the time when the first packet of a flow leaves the

sourceand the time when the last packet of the same flow arrives at the destination (in seconds) [18].

Figure 9. k=4, fat-tree topology

4.1. Simulation environment and measurement

In this measurement, we use traffic pattern random type, which is a host sends the amount of traffic

to any other host in the network with uniform probability. For TCP traffic, every elephant flow size is 1 GB.

For UDP traffic, we set the target file transfer rate 100 Mbps and run time duration 100 seconds. In topology

setting as shown in Table 1, the edge link speed is set 300 Mbps, the aggregation link speed is set 100 Mbps

and the core link speed is set 200 Mbps. The delay range is 20~95.7 ms and delay difference between paths is

ranging from 15 ms to 80 ms. In sFlow setting as shown in Table 2, the elephant detection threshold is >=30

Mbps (10% of edge links). There are two sampling in sFlow, packet sampling and counter sampling. Packet

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 9, No. 4, August 2019 : 3203 - 3211

3210

sampling consists of statistical data gathered from individual flows and counter sampling is polling of

counters to gather interface data. In this paper, we use packet sampling rate: 1-in-300 packets and counter

polling interval: 10 seconds.

Table 1. Topology setting Table 2. sFlow setting

Parameters Values

Link speed 200 Mbps :100 Mbps :300 Mbps
Link Delay (20~95.7) ms

Delay Difference (15~30) ms

Parameters Values

Elephant Flow Detection Threshold >= 30 Mbps
Sampling Rate 1-in-300 packets

Polling Inverval 5seconds

5. RESULT AND ANALYSIS

The results of the proposed scheme are compared with ECMP and reactive forwarding. In Figure 10,

the elephant flow management method has been tested the average throughput improvement 19.18%~43.03%

than ECMP and 33.62%~53.13% than reactive forwarding method. This is because the proposed elephant

flow rerouting method reroutes the elephant flows to the least cost path based on types of traffic while ECMP

chooses the route based on hashing of header values and the reactive forwarding method only uses the

shortest paths for all traffic flows. When the number of elephant flow is 1, the proposed flow management

method can schedule elephant flow in a way that provides the maximum throughput. Then the throughput of

all algorithms decreases while the number of elephant flow increases. However, the proposed algorithm

keeps the higher average throughput under more than one elephant flow. Figure 11 shows the average FCT

per elephant flow in random traffic. In general, the FCT goes higher with the random number of elephant’s

flows in network increases. The proposed method has FCT reduction 16.83%~44.72% rather than ECMP and

28.84%~45.54% rather than the rerouting forwarding method. When the number of elephant flow reaches to

12, the average FCT of the proposed method is 132.52 seconds and the average FCT of ECMP and reactive

forwarding is 165.35 and 249.93 seconds respectively. Figure 12 shows the average throughput per UDP

elephant flow in random traffic. The number of elephant flows is generated from 1 to 12. The proposed

method has throughput improvement 22.85%~45.7% rather than ECMP and 34.24%~52.50% rather than

reactive forwarding method. According to the above results and verification, our proposed method can

improve the network performance in terms of throughput and FCT for both TCP and UDP flow types.

Figure 10. Average throughput per TCP elephant flow

Figure 11. Average FCT per TCP elephant flow

Figure 12. Average throughput per UDP elephant flow

Int J Elec & Comp Eng ISSN: 2088-8708

Traffic management with elephant flow detection in software defined networks (SDN) (Hnin Thiri Zaw)

3211

6. CONCLUSION

In this paper, a new dynamic flow management scheme for fat-tree network is presented which

differentiates elephant flows and re-scheduling to least cost path for both TCP and UDP traffic. Making use

of SDN infrastructure and sFlow engine, our proposed approach can detect and re-reschedule TCP/UDP

elephant flows using end-to-end path delay and bandwidth utilization, while mice flows are transmitted via

reactive forwarding method. As the verification results, our proposed method improves average throughput

and FCT for elephant flows in comparison with traditional ECMP and reactive forwarding. However, due to

the requirement of Mininet emulator for modeling SDN fat-tree infrastructure, we encourage to research and

evaluate on the realistic SDN testbed.

REFERENCES
[1] N. McKeown, T. Anderson, et al, "OpenFlow: Enabling innovation in campus networks," SIGCOMM Computer

Communication, vol. 38, no. 2, pp. 69-74, 2008.

[2] E. Hopps, "Analysis of an equal-cost multi-path algorithm," 2000.

[3] M. Gholami, B. Akbari, "Congestion control in software defined data center networks through flow rerouting,"

23rd Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran. pp. 654-657, 2015.

[4] Y. Li, D. Pan, "Openflow based load balancing for fat-tree networks with multipath support," 12th IEEE

International Conference on Communications (ICC13), Budapest, Hungary, pp. 1-5, 2013.

[5] K. Truong, S. Kukliski, W. Kujawa, M. Ulaski, "MSDN-TE: Multipath based traffic engineering for SDN," Asian

Conference on Intelligent Information and Database Systems, Berlin, Heidelberg. pp. 630-639, 2016.

[6] J. Eric, D. Pan, J. Liu, L. Butler, "A simulation and emulation study of SDN-based multipath routing for fat-tree

data center networks," Proceedings of the Winter Simulation Conference (WSC), pp. 3072-3083, 2014.

[7] B. Conghui, X. Luo, T. Ye, Y. Jin, "On precision and scalability of elephant flow detection in data center with

SDN," Globecom Workshops (GC Wkshps), pp. 1227-1232, 2013.

[8] R. Kanagevlu, K. M. M. Aung, "SDN controlled local re-routing to reduce congestion in cloud data center," 2015

International Conference on Cloud Computing Research and Innovation (ICCCRI), pp. 80-88, 2015.

[9] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat, "Hedera: Dynamic flow scheduling for data

center networks,” in NSDI, vol. 10, no. 8, pp. 89-92, 2010.

[10] Z. H. Thiri, A. H. Maw, "Elephant flow detection and delay-aware flow rerouting in software-defined network," 9th

International Conference on Information Technology and Electrical Engineering (ICITEE), Thailand, pp.1-6, 2017.

[11] A. Bianco, P. Giaccone, R. Mashayekhi, M. Ullio, V. Vercellone, "Scalability of ONOS reactive forwarding

applications in ISP networks," Computer Communications, vol. 102, pp. 130-138, 2017.

[12] "Open Network Foundation (ONF)," [Online]. Available: https://onosproject.org, [accessed at: Aug 18, 2017].

[13] L. Cong, W. Yong-Hao, "Strategy of Data Manage Center Network Traffic Scheduling Based on SDN," 2015

International Conference on Intelligent Transportation, Big Data and Smart City (ICITBS), pp. 29-34, 2016.

[14] A. R. Curtis, W. Kim, P. Yalagandula, "Mahout: Low-overhead datacenter traffic management using end-hostbased

elephant detection, Proceedings of IEEE INFOCOM, pp. 1629-1637, 2011.

[15] "InMon Corp," [Online], Available: https://inmon.com/, [accessed at: Mar 30, 2016].

[16] "Mininet," [Online], Available: http://mininet.org, [accessed at: Dec 21, 2012].

[17] "Iperf," [Online], Available: https://iperf.fr/, [accessed at: Jul 7, 2014].

[18] Carpi, A. Engelmann, A. Jukan, "DiffFlow: Differentiating short and long flows for load balancing in data center

networks, " Global Communications Conference (GLOBECOM), pp. 1-6, 2016.

BIOGRAPHIES OF AUTHORS

Hnin Thiri Zaw She received master degree in computer technology from University of

Computer Studies, Yangon (UCSY), in 2011. She is currently pursuing her PhD. from UCSY.

Her research work is on traffic engineering and software-defined network.

Aung Htein Maw received the Master of Information Science (M.I.Sc.) degree from University of

Computer Studies, Yangon (UCSY), in 2001, the master degree in Engineering Physics

(Electronics) from Yangon Technological University (YTU), Myanmar, in 2002, and the Ph. D

degree in Information Technology from UCSY, in 2009. He is one of the professors of Faculty of

Computer Systems and Technologies, University of Information Technology. His research

interests include Data Science and Advanced Network Systems. He has published technical papers

in these areas, in the conference proceedings and jounals like IEEE and ACM Computing Survey.

He has been cooperated at Research Collaborator in AssiaConnect Project and Subject Matter

Expert in Asean Cyber University (ACU) project.

