
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 9, No. 3, June 2019, pp. 2025~2032 

ISSN: 2088-8708, DOI: 10.11591/ijece.v9i3.pp2025-2032      2025 

  

Journal homepage: http://iaescore.com/journals/index.php/IJECE 

Arabic named entity recognition using deep learning approach 
 

 

Ismail El Bazi, Nabil Laachfoubi 
IR2M Laboratory, FST, Univ Hassan 1st, Settat, Morocco 

 

 

Article Info  ABSTRACT  

Article history: 

Received Apr 27, 2018 

Revised Nov 20, 2018 

Accepted Dec 10, 2018 

 

 Most of the Arabic Named Entity Recognition (NER) systems depend 

massively on external resources and handmade feature engineering to 

achieve state-of-the-art results. To overcome such limitations, we proposed, 

in this paper, to use deep learning approach to tackle the Arabic NER task. 

We introduced a neural network architecture based on bidirectional Long 

Short-Term Memory (LSTM) and Conditional Random Fields (CRF) and 

experimented with various commonly used hyperparameters to assess their 

effect on the overall performance of our system. Our model gets two sources 

of information about words as input: pre-trained word embeddings and 

character-based representations and eliminated the need for any task-specific 

knowledge or feature engineering. We obtained state-of-the-art result on the 

standard ANERcorp corpus with an F1 score of 90.6%. 
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1. INTRODUCTION  

The Named Entity Recognition (NER) task aims to identify and categorize proper nouns and 

important nouns in a text into a set of predefined categories of interest such as persons, organizations, 

locations, etc. [1] NER is a mandatory preprocessing module in several natural language processing (NLP) 

applications such as syntactic parsing [2], question answering [3] and entity coreference resolution [4]. 

Achieving the best performance on NER task requires large amounts of external resources such as gazetteers, 

plenty of hand-crafted feature engineering and extensive data pre-processing. However, developing such 

task-specific resources and features is costly and needs a lot of time. For morphologically rich languages like 

Arabic, this task becomes even more challenging due to its unique characteristics. The highly agglutinative 

nature of Arabic allows for the same word to have different morphological forms which generate a lot of data 

sparseness. Also, the absence of diacritics in most modern standard Arabic texts creates a lot of ambiguity 

since many words can share the same surface form without diacritics but have different named entity (NE) 

tags. Furthermore, unlike most European languages, there is no capitalization in Arabic. Therefore, it is not 

possible to use capitalization as feature indicator to detect named entities. Finally, there are a very limited 

number of linguistic resources such as gazetteers and NE annotated corpora, freely available for researchers 

to build decent Arabic NER systems. 

Mainly, the researchers interested in NER for the Arabic language follow three approaches: rule-

based [5],[6], machine learning(ML)-based [7], [8] and hybrid approaches [9]-[11]. These three approaches 

suffer from the same issues since it needs a lot of language-specific knowledge and an extensive feature 

engineering to obtain useful results. This is even more accentuated by the lack of linguistic resources and the 

complex morphology of the language. 

Recently, the Deep Learning (DL) [12] paradigm has emerged and made impressive achievements 

in fields such as speech processing [13] and image recognition [14]. For NLP, the application of deep 
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learning has proven to be very effective yielding state-of-the-art in various common NLP tasks as sequence 

labeling [15], sentiment analysis [16],[17] and machine translation [18] for the English language. Unlike 

traditional approaches, DL is an end-to-end model that did not rely on data preprocessing, manual feature 

engineering or large amounts task-specific resources and can be adapted to various languages and domains. 

This makes it a very attractive solution for complex and low resource language like Arabic. 

Motivated by the success of deep learning in several NLP applications, we introduce an Arabic NER 

system based on deep neural networks. In the DL literature two neural network architectures are widely used: 

convolutional neural networks (CNN) [19] and long-short-term memory (LSTM) [20]. Thus the neural 

network architecture that we introduce on this paper embraces both models. We employ CNN to induce 

character-level representations of words and we feed it in conjunction with word embeddings to a 

bidirectional LSTM network (BiLSTM) that perform the training. Finally, we use a conditional random fields 

(CRF) [21] layer to do the decoding of the input sequence. 

Since the careful selection of optimal parameters can often make a huge difference in the 

performance of neural network architecture, we thoroughly investigated the impact of diverse 

hyperparameters on the overall performance of the chosen neural architecture and selected the best ones for 

our final model. 

Our main contributions of this paper are as follows: 

a. Proposing a deep learning approach to address the Arabic NER task. 

b. Evaluating and selecting the optimal hyperparameters for the proposed neural network architecture. 

c. Confirming the advantage of integrating character-based representations for morphologically rich 

languages like Arabic. 

d. Achieving state-of-the-art results on the standard ANERCorp corpus without the need of any feature 

engineering or domain-specific knowledge. 

 

 

2. PROPOSED APPROACH 

In this section, we outline the deep learning approach that we adopted to tackle the NER task for the 

Arabic language. We propose neural network architecture composed of a BiLSTM layer and a CRF layer. 

First, we compute the character representation for each word using either CNN or BiLSTM (see Section 2.5 

for details), then we concatenate it with the word embeddings before feeding into the BiLSTM layer. This 

layer is composed of two LSTM networks. The forward LSTM reads the word sequence from the beginning 

when the backward LSTM reads it in opposite order. Finally, the output vectors of both LSTM networks are 

concatenated and sent as input to the CRF layer to generate the tags prediction for the input sequence. The 

architecture of our neural network is illustrated in detail in Figure 1. We briefly describe the layers of our 

model in the following sections. 

 

 

 
 

Figure 1. The main architecture of our neural BiLSTM-CRF network 
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2.1.  LSTM 
Long-short term memory (LSTM) networks are variants of recurrent neural networks (RNN) 

specially designed to address some well-known issues related to exploding and vanishing gradient by 

appending an extra memory-cell. LSTMs are very effective to capture long-distance dependencies. They take 

as input a sequence of vectors (x1,x2,…,xn) of length n and return an output sequence of vectors (h1,h2,…,hn) 

called hidden states. The LSTM implementation used is represented by the following formulas at time t: 

 

𝑖𝑡 =  𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1  +  𝑊𝑐𝑖𝑐𝑡−1) +  𝑏𝑖 (1) 

 
𝑐𝑡 = (1 − 𝑖𝑡)ʘ 𝑐𝑡−1 +  𝑖𝑡ʘ tanh (𝑊𝑥𝑐𝑥𝑡 +  𝑊𝑐𝑖ℎ𝑡−1  +  𝑏𝑐) (2) 

 
𝑜𝑡 =  𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1  +  𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜) (3) 

 
ℎ𝑡 =  𝑜𝑡  ʘ tanh (𝑐𝑡) (4) 

 

where σ denotes the element-wise sigmoid function and ʘ the element-wise product. it  is the input gate 

vector, ct the cell state vector and ot the output gate vector. All W and b are trainable parameters. 

 

2.2.  BiLSTM 

Despite their capability to capture long-distance dependencies, standard LSTMs are not very 

effective on sequence tagging tasks like NER. In fact, an LSTM unit can take information only from past 

context, but for sequence tagging is very useful to retrieve both past and future information. To overcome 

this constraint we use bidirectional LSTM. The basic idea is that we will use two separate LSTM units. The 

first one is a forward LSTM that reads the sequence of words and induces a representation of the past 

context. The second one is a backward LSTM that takes the same sequence but in reverse and induces a 

representation of the future context. The final representation of a word is the combination of its past and 

future context representations. 

 

2.3.  CRF layer 

To predict the final tag sequence for the input sentence, we feed the output of the BiLSTM layer to a 

classifier. A very simple example of classifier layer is softmax. It is suitable for simple tasks where the output 

tags are independent. For more complex sequence tagging tasks like NER, where we have strong 

dependencies between output tags, the independence assumptions are not valid. Actually, in NER with IOB2 

format I-LOC cannot follow B-PER. Hence, instead of decoding each tag independently, we jointly decode 

the tag predictions utilizing a conditional random field component which maximizes the tags probabilities of 

the whole sentence. 

 

2.4.  Word embeddings 

Word embeddings are dense low-dimensional real-valued vectors learned over unlabeled data using 

unsupervised approaches. Each word in an input sentence can be mapped to a pre-trained word embedding. 

For unseen words, word embedding has a very good generalization since it potentially captures useful 

semantic and syntactic properties between words. These interesting characteristics, allow it to significantly 

boost the performance of various NLP tasks [15], [22]. For our neural network architecture, we use 

pretrained word embeddings as input to efficiently initialize the lookup table of our model.  

 

2.5.  Character representations 

The use of word embeddings is usually sufficient to get the best performance for the English 

language. For morphologically rich languages like Arabic, the richness of the morphological forms make the 

vocabulary sizes larger and the out-of-vocabulary (OOV) rate relatively higher. Hence the needs of another 

representation of word based on its characters to effectively capture the orthographic and morphological 

information such as pre- and suffixes of words and encode it into neural representations that can be used by 

our model. Mainly, there are two ways to learn character representations. We can use convolutional neural 

networks [15] to encode a character-based representation of a word. Figure 2 shows the CNN architecture 

used. On the other hand, we can also use bidirectional LSTMs [22] to generate a character-based 

representation of a word from its characters. Figure 3 describes the BiLSTM architecture. 
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Figure 2. Character-based representation using CNN 

 

Figure 3. Character-based representation using 

BiLSTM 

 

 

3. EXPERIMENTS 

This section provides details about the training of our neural network. Since the achievement of 

state-of-the-art results using neural networks requires the selection and optimization of many 

hyperparameters, we will also study the impact of the hyperparameters and the parameter initialization on the 

overall performance of our models. We will precisely evaluate the impact of the following hyperparameters: 

pre-trained word embeddings, character representation, dropout, and optimizers.  

 

3.1.  Network training 

Our neural model is implemented using Keras API with the Theano library as a backend [23]. 

The training is done using the back-propagation algorithm with the Adam optimizer. We use gradient 

normalization of 1 to deal with “gradient exploding”. For all our experiments, we run the training with the 

mini-batch size of 8 for 50 epochs and apply early stopping of 5 based on the performance on the validation 

set. The remaining default settings of the hyperparameters are summarized in Table 1. 

 

 

Table 1. The Default Hyperparameters of the Network 
Layer Hyperparameter Value 

CNN 
window size 3 

number of filters 30 

LSTM 
state size 50 

number of layers 2 

Dropout 
Dropout type Naive 

dropout rate 0.5 

 

 

3.2.  Pre-trained word embeddings 

We employ pretrained word representations to initialize our lookup table. We learned our own word 

embeddings using the Arabic Wikipedia dump of December 2016 with a dimension of 50. To assess if the 

choice of the learning algorithm is relevant, we experiment with 5 models namely, SkipGram [24], CBOW 

[25], GloVe [26], FastText [27] and Hellinger PCA (H-PCA) [28]. We also assess the impact of the vector 

size by varying it for the best performing algorithm between 50 and 500. 

 

3.3.  Character representations 

In this experiment, we check if the use of character representation is helpful and can really have a 

tangible impact on the performance of the network. Additionally, we compare the CNN and BiLSTM 

approaches of learning character-based representations and analyze which one to be preferred in regard to 

performance. 

 

3.4.  Dropout 

Dropout is a key method to regularize the neural model and mitigate overfitting. In this experiment, 

we evaluate three setups: No dropout, naive dropout, and variational dropout [29]. The dropout rate is 

selected from the set {0.25, 0.5, 0.75}. 
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3.5.  Optimizer 

The optimizer is an algorithm that helps us to minimize the objective function of the neural network. 

The choice of an optimizer can influence both the performance and the training time of our model. 

We experiment with 6 popular optimizers. Namely, Stochastic Gradient Descent (SGD), Adagrad, Adadelta, 

Adam, Nadam, and RMSProp. 

 

3.6.  Data sets 

To evaluate the impact of hyperparameters we use the Arabic Wikipedia named entity corpus 

(AQMAR) [30]. It is a small annotated corpus of 74K token that we choose it for convenience due to the 

limited computation power that we have to run our experiments. The corpus statistics are depicted in Table 2. 

 

 

Table 2. AQMAR Corpus Statistics 
Dataset Sentences Words Entities 

Train 1976 52650 3781 

Dev 336 10640 1099 

Test 376 10564 974 

 

 

For the comparison with previously state-of-the-art Arabic NER systems, we use the ANERCorp 

corpus. It is a publicly available dataset and considered the standard benchmark for the Arabic NER task. 

The corpus statistics are summarized in Table 3.  

The training of neural networks is a very non-deterministic process as it typically depends o 

 the random number generator to initialize the weights of the network [30]. To mitigate the impact of this 

observed randomness in the evaluation of our neural network, we execute all the experiments 5 times and use 

the average of F1 scores as the comparison metric. 

 

 

Table 3. ANERCorp Corpus Statistics 
Dataset Sentences Words Entities 

Train 4756 120011 12833 

Dev 585 14976 1726 

Test 546 15019 1605 

 

 

4. RESULTS AND DISCUSSION 

Table 4 shows the impact of various pretrained word embeddings on the Arabic NER task. Despite 

that we run all the five learning algorithms using the default setting on the same unlabeled data, we can see 

that FastText has consistently outperformed the other models with an average F1 score of 70.86%. 

The second best model is SkipGram with a 61.91% in F1 score. In fact, FastText is an extension of 

SkipGram, but instead of using words directly, it learns word embedding using character n-grams. 

This simple trick allows it to take the morphology of words into account and helps to deal with rare and out 

of vocabulary words which is always the case for morphology rich language like Arabic. Hence, our 

empirical results show that the FastText is more suitable for these types of languages in comparison with 

other learning algorithms. 

 

 

Table 4. Results with Different Choices of Word Embeddings 
Model F1 

 Run 1 Run 2 Run 3 Run 4 Run 5 Average 

FastText 70,82 70,79 68,84 70,89 72,94 70,86 

SkipGram 66,04 56,33 59,79 61,53 65,9 61,91 

CBOW 55,94 59,44 61,78 51,17 52,38 56,14 

Glove 55,74 63,98 64,05 58,25 61,63 60,73 
HPCA 36,38 41,18 39,38 38,93 40,98 39,37 

 

 

In Table 5, we vary the size of the FastText word embeddings to see if it influences the performance 

of our system. Surprisingly, increasing the vector size did not further enhance the performance even with 

bigger values as 500, rather it decreases it. So vector dimension 50 was optimal in our case. Actually, while 

intrinsic tasks like word similarity have usually clear tendency to prefer higher vector dimensionality to 

effectively capture semantic relationships between words, the extrinsic tasks like NER usually require more 
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careful tuning to find the optimal dimensionality and tend to favor lower vector size [31]. Therefore, 

the choice of vector size between 50 and 100 should usually be enough for similar tasks as NER to get the 

best results. 

 

 

Table 5. The Performance Comparison when Varying the Size of FastText Word Embeddings 

Size 
F1 

Run 1 Run 2 Run 3 Run 4 Run 5 Average 

50 70,82 70,79 68,84 70,89 72,94 70,86 

100 69,65 69,25 70,39 70,52 69,32 69,82 
200 67,45 68,25 67,95 66,89 68,67 67,84 

300 69,66 68,87 69,37 66,58 67,89 68,47 

400 68,61 68,57 69,61 68,54 67,97 68,66 
500 67,57 69,26 69,75 69,95 69,5 69,2 

 

 

Concerning character representations, Table 6 shows that using it yields to significantly better 

performance on the Arabic NER task. Precisely, the CNN approach was superior to the BiLSTM one in all 

the 5 runs of our setup. Thus, we adopt it as the default setting for all upcoming experiments due to its 

superiority and its higher computational efficiency. Interestingly, recent studies [31] suggest that there is no 

statistical difference of using character representations when applied to the English NER task. Indeed, 

for languages like English which did not exhibit morphology richness, the use of character representations is 

no mandatory to get the best results, but for morphology rich languages like Arabic it is crucial to use it to 

deal with the complexity and the higher number of rare and out-of-vocabulary words observed.  

 

 

Table 6. Comparison of not using Character Representations and using CNN or BiLSTM to Induce  

Character-based Representations 

 
F1 

Run 1 Run 2 Run 3 Run 4 Run 5 Average 

None 65,9 67,15 65,31 65,68 65,79 65,96 

CNN 70,82 70,79 68,84 70,89 72,94 70,86 

BiLSTM 68,8 67,92 67,65 68,16 67,66 68,04 

 

 

In Table 7, we study the impact of dropout. We evaluate three options: naive dropout, variational 

dropout, and no dropout and select the dropout rates from the set {0.25, 0.5, 0.75}. We observe the best 

performance with a dropout rate of 0.25. The naive dropout produces the best results with an average F1 of 

71.08%. The variational dropout yields a competitive result of 70.52%. 

 

 

Table 7. Results with and without Dropout using different Rates 

Dropout 
Dropout 

rate 

F1 

Run 1 Run 2 Run 3 Run 4 Run 5 Average 

None n/a 70,31 69,83 71,49 71,08 69,58 70,46 

Naive 0.25 70,53 71,5 71,55 72,61 69,19 71,08 

Naive 0.5 70,82 70,79 68,84 70,88 72,94 70,85 
Naive 0.75 69,19 71,62 69,86 66,6 62,21 67,9 

Variational 0.25 70,12 71,65 70,15 70,19 70,48 70,52 

Variational 0.5 69,07 67,66 65,75 60,17 58,46 64,22 
Variational 0.75 55,5 58,27 57,84 56,83 55,17 56,72 

 

 

Table 8 depicts the results for the different optimizers applied to our neural network. We used the 

settings recommended by the authors of each optimizer. Adam shows the best performance, yielding the 

highest score for 70.86%. Nadam which is a variant of Adam (Adam with Nesterov momentum) achieves a 

very competitive performance of 70.57%. Remarkably, SGD produces the worst score of 33.82%. Actually, 

SGD is very sensitive to the choice of the learning rate and since we did not fine tune it manually, it failed to 

converge to a minimum. Furthermore, applying early stopping did not help as SGD needs usually more 

epochs to find the global minimum of the objective function. 

In order to compare our neural network with the best performing Arabic NER systems, we apply our 

BiLSTM-CRF model to the standard ANERcorp dataset using the best hyperparameters evaluated and 

selected during our previous experiments. Since the performance of both naive and variational dropout was 

http://www.thesaurus.com/browse/furthermore
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quite close and it is also the case for the Adam and Nadam optimizers, we decided to experiment with 

different settings of these hyperparameters in combination with the other best hyperparameters to be sure that 

we have the optimal setup for our model. Table 9 summarizes the results. The best performance of our 

BiLSTM-CRF model is achieved using Nadam as an optimizer and variational dropout with an average F1 

score of 90.60%. 

 

 

Table 8. Performance Comparison for Various Optimizers 

Optimizer 
F1 

Run 1 Run 2 Run 3 Run 4 Run 5 Average 

Adam 70,82 70,79 68,84 70,89 72,94 70,86 

Nadam 71,1 71,57 71,28 67,93 70,96 70,57 
Rmsprop 69,19 68,08 69,53 68,9 69,42 69,02 

Adadelta 55,97 58,91 65,2 58,82 53,51 58,48 

Adagrad 57,34 57,77 52,54 53,62 60,74 56,4 

SGD 36,35 24,24 37,27 37,47 33,78 33,82 

 

 

Table 9. Results on the ANERcorp Dataset using the best Hyperparameters 

Settings 
F1 

Run 1 Run 2 Run 3 Run 4 Run 5 Average 

Nadam + Variational Dropout 90,56 90,38 90,36 90,78 90,91 90,60 

Adam +  Variational Dropout 89,51 90,22 89,97 90,07 90,12 89,98 
Adam + Naive Dropout 88,05 88,75 88,27 88,11 87,71 88,18 

Nadam +Naive Dropout 89,62 88,25 89,16 88,99 89,38 89,08 

 

 

In Table 10, we present the results of our system in comparison with three previous top performing 

systems for Arabic NER. Our system achieves significant improvements over [7] and [9] on the standard 

ANERcorp dataset with an F1 score of 90.6%. We obtain state-of-the-art result in comparison with [10]. Our 

model is slightly lower with 0.06%. 

In fact, the system introduced by Shaalan and Oudah [10]  is a hybrid model that combines machine 

learning-based component and rule-based component. It relies heavily on the task-specific and language 

dependent knowledge provided by the rule-based component and uses a lot of handcrafted engineered 

features including morphological features, POS tags, capitalization features and gazetteers to achieve state-

of-the-art performance. On the other hand, Our BiLSTM-CRF model has the advantage of being a true end-

to-end system that does not require any feature engineering, data pre-processing or external resources and 

therefore can be easily extended to other domains with minimal tweaking. 

 

 

Table 10. Comparison with Previous Top Performance Arabic NER Systems on ANERcorp Dataset 
Model F1 

CRF-based system [7] 75.66 

Abdallah et al. [9] 88.33 
Shaalan  and Oudah [10] 90.66 

Our system 90.60 

 

 

5. CONCLUSION 

This paper proposes neural network architecture for Arabic NER based on bidirectional LSTMs. We 

evaluated different commonly used hyperparameters for our BiLSTM-CRF architecture to assess their impact 

on the overall performance. Our best model obtains state-of-the-art results with an F1 of 90.6% using 

FastText pre-trained word embeddings, CNN Character Representations, a variational dropout and Nadam 

optimizer. 

In comparison with previously state-of-the-art Arabic NER systems, our neural model is truly end-

to-end and does not depend on any data preprocessing, external task-specific resources or handcrafted feature 

engineering. It is also very flexible by allowing the effortless addition of another type of named entities as 

numeral and temporal NEs, facilities and geo-political NEs, etc. 

Our ongoing work is to explore multi-task learning approaches and see if it can further improve our 

model. Also, we hope that we can extend this work to other domains like noisy user-generated text which is 

more challenging. 
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