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 Authorship attribution (AA) is a subfield of linguistics analysis, aiming to 
identify the original author among a set of candidate authors. Several 
research papers were published and several methods and models were 
developed for many languages. However, the number of related works for 
Arabic is limited. Moreover, investigating the impact of short words length 
and training set size is not well addressed. To the best of our knowledge, no 
published works or researches, in this direction or even in other languages, 
are available. Therefore, we propose to investigate this effect, taking into 
account different stylomatric combination. The Mahalanobis distance (MD), 
Linear Regression (LR), and Multilayer Perceptron (MP) are selected as AA 
classifiers. During the experiment, the training dataset size is increased and 
the accuracy of the classifiers is recorded. The results are quite interesting 
and show different classifiers behaviors. Combining word-based stylomatric 
features with n-grams provides the best accuracy reached in average 93%. 
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1. INTRODUCTION  
Unlike text categorization, authorship attribution (AA) is a subfield of linguistics analysis which 

aims to identify the original author among a set of candidate authors [1]. The idea can be created basically as 
follows: for given text sets of known authorship, the author of the unseen text is estimated by matching the 
anonymous text to one author of the candidate set. The estimated function depends on the extracted human 
“stylometric fingerprint” features. Despite author's writing style that can change from topic to topic, some 
persistent, uncontrolled habit and writing styles are still valid over the time.  

Although the importance of Arabic language and the global position which it holds and the widely 
use by hundreds of millions of people, only a very small number of authorship attribution studies that employ 
machine-learning methods has been published for Arabic texts so [2]. Abbasi and Chen, e.g., applied support 
vector machine (SVM) and C4.5 decision trees on political and social Arabic web forum messages [3]. 
Despite the notable results they have, the dataset is quite large to extract enough features. Stamatatos [4] 
tested also the use of SVM on Arabic newspaper. Although the experiment was conducted to investigate the 
effect of class imbalance problem, the findings encouraged us to investigate which size and length effect the 
performance of AA classifiers has. In [2], the linear discriminant analysis (LDA) is used. For attributing text, 
function words were used as feature. At training and testing phase, the used texts were divided into two 
chunks: the first chunk with 1000-words, while the second chunk with 2000-words. The findings indicate that 
the longer the text is, the higher the obtained performance. The best performance they obtained with the 
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second chunk was around 87% accuracy. The same findings were reported in [5] in which the authors 
examined the performance of several classifiers, namely, SVM, MLP, Linear Regression, Stamatatos 
distance and Manhattan distance. The results confirmed the findings by Eder in 2013 for the English 
language [6] and the minimum size of textual data is 2500 words per documents.  

Existing works on authorship attribution are conducted with long text size. Besides that, there are 
many problems facing researchers in this domain, especially in Arabic: 
a. Researches in AA are quite few and are not tackled as much as in other languages; 
b. Absence a benchmark data sets, full adaptable support tools lead to increase the exerted effort in 

extracting the necessary features; 
c. Nature of Arabic language also adds extra steps to text preprocessing, and words in Arabic tend to be 

short, which might reduce the effectiveness of some stylistic features, such as word length 
distribution [3].  

Like any supervised learning problem, solving the AA problems go through three key phases: (i) 
data preprocessing phase where the typical dataset collection, feature extraction, feature selection, and 
dimension reduction are necessary steps; (ii) training/testing phase: at this step, the classifiers are selected 
and the model is built; and (iii) pattern evaluation: to ensure the performance of the selected classifier, k-fold 
cross validation with different feature combination is conducted and accuracy of the models are computed. 

Current paper tries to draw the researchers' attention to increase their efforts to enhance research in 
Arabic language domain. Since the AA problems in Arabic domain are many, current study focuses, on one 
hand, on investigating the effect of training set size with short text length. The reason behind such selection is 
to provide insights on the way the training set size impacts the accuracy performance. On the other hand, to 
help guide others in selecting suitable classifiers based on the size of the training set so that it will give the 
optimum result.  

 In the preparation for this research, there are, to the best of our knowledge, no published works or 
researches in this direction or even in other languages. Since there are numerous methods which have been 
developed to tackle the AA problem, the researcher limits his investigation to selected methods and writing 
style features; however, the idea is still valid to assess other classifiers with different writing style 
combination.  

This paper is organized as follows: Section II gives a general overview of the authorship attribution 
problem, the selected writing styles, and the selected classifiers. Section III presents the conducted 
experiment and finding results and Section IV provides some comparison with other existing works in term 
of accuracy. Finally, Section V summarizes the whole paper. 

 
 

2. AUTHORSHIP ATTRIBUTION 
2.1 The selected writing style features 

To identify the author of an unseen text, set of popular features are extracted in order to quantify the 
writing style. In the literature, several features can be found. The interested reader is referred to [1], [5], [7] 
and [8]. These features can be categorized into seven main groups: lexical, character, syntactic, semantic, 
content-specific, structural and language-specific. In this paper, the lexical features, namely word-based 
features have been selected. The features were combined with n-gram method and Part-of-Speech and 
organized different sets for testing as follows: 
Set1: Word-based Lexical Features (WLF). 
Set2: N-Gram. 
Set3: Part-of-Speech (POS) 
Set4: N-gram + POS 
Set5: WLF+N-gram 
Set6: WLF+POS 
Set7: WLF+N-gram+ POS 
 
2.2 The selected classifiers 

Since there are various machine learning methods that can be used for AA and due to many 
classifiers can be selected, our selection was randomly and the following methods were used: Mahalanobis 
distance (MD), Linear Regression (LR), and Multilayer Perceptron (MP).  

 
2.2.1. Mahalanobis distance 

The Mahalanobis distance is a measure of distance between an observation 𝑥⃗ = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥ே)
், 

a set of its means 𝜇 = (𝜇ଵ, 𝜇ଶ, 𝜇ଷ, … , 𝜇ே)
்   and a distribution D ( covariance matrix S ) as follows: 
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It can also be defined as a dissimilarity measure between two random vectors x and y  of the 
same distribution with the covariance matrix S: 
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In the cases the where the covariance matrix is the identity matrix, the Mahalanobis distance is 

reduced to the Euclidean distance. In addition to this, if the covariance matrix is diagonal, then the resulting 
distance measure is called a normalized Euclidean distance:  
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where is is the standard deviation of the ix and iy  over the sample set. The Mahanalobis distance is 

widely used in LDA, Clustering analysis, and classification techniques.  
 

2.2.2. Linear regression 
LR is one of the oldest methods that is widely used in predictive analysis. The main idea behind it is 

to minimize the sum of the squared errors to fit a straight line to a set of data points.  The LR model assumes 

that the relationship between the dependent variable iy
 and the p-vector of regressors ix

 is linear. 
Formally, the model takes the form: 
 

  Xy  (4) 
 

where, 
y

is called the regressand or response variable, X are regressors or predictor variables,  are a 

"estimated effects" or regression coefficients, and is an error term. 
 
2.2.3. Multilayer perceptron 

The MLP is a classical neural network classifier in which the errors of the output are used to train 
the network [9]. When applying MLP classifier, we should take in consideration the high computational 
effort for training [10] and problem falling in a local minima which leads to some errors of classification. In 
nature, the MLP is a class of feed forward network. It consists of three layers of nodes with at least one or 
more hidden layer(s). To ensure training of the networks, several back- propagation techniques have been 
utilized. Figure 1 represents a MLP with a single hidden layer (interested reader can refer [11]. 

 
 

 
 

Figure 1. A MLP with single hidden layer 
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3. EXPERIMENT AND FINDING RESULTS 
3.1.  Dataset 

Our dataset corpus consists of 4631 texts documents which were extracted from Dar Al-ifta AL 
Misriyyah website. The texts include Islamic fatwas from 1896 to 1996. The original texts were unstructured 
and required special tool to extract the fatwa structure from the whole documents. For this purpose, a C# tool 
was implemented. Since we seek to investigate the size and word length effects on AA classifiers, we 
grouped fatwas by the word length and size into different groups. Then, a set with the smallest test size is 
used later during the experiment. Table 3 summarizes the statistical features of the used dataset. The word 
size ranges widely. It varies from 11 words to 1500 words per texts. 

 
3.2.  Design of experiment  

As mentioned previously, AA problem can be considered a supervised learning task which means 
there is a need to train the model, and then test it on a set of unseen texts. Despite the whole text mining 
process, we focus here only on the training/test phases and evaluate the performance of the classifiers by the 
number of right predicted texts. As said earlier, a combination of WLF, N-gram, and POS features are used 
and three types of classifiers are employed (i.e., Mahalanobis distance, MLP, and Linear Regression).  

Figure 2 presents in addition to the typical solution of an AA problem, the way that we are followed 
during the experiment (the colored lines in red). Below, the general procedure of the experiment: 
a. After executing the whole training and attributing phase, the finding results are recorded. Then, at the 

next iteration, we increase the training set size and the whole procedure is executed again and again. We 
limit the experiment with 4-fold iterations. However, there is a possibility to increase number of iterations 
based on the partitioned training sets.    

b. The classifier type is still the same until we investigate all the partitioned training sets. 
c. The all writing feature combinations are examined, and then the accuracy of the model is recorded.  

To avoid a bias that may occur, the partitioned training sets were collected carefully and t-tests were 
conducted to ensure that the training sets are not significant differ. The training sets were organized as 
follows: 
a. TS1: the training set with 330 documents 
b. TS2: the training set with 378 documents 
c. TS3: the training set with 414 documents 
d. TS4: the training set with 438 documents 
 
 

 
 

Figure 2. Design of experiment 
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3.3.   Experimental findings 
3.3.1. Authorship attribution using WLS features 

We recorded the accuracy performance after employing the classifiers with different training sets as 
shown in Table 1. As we can see, the classifiers performed differently within the training sets. In almost data 
sets, the MLP overcomes others classifiers when the training sets have been increased. 

 
 

Table 1. Performance of classifiers with WLF features 
Classifier Type TS4 TS3 TS2 TS1 

MLP 77.08% 91.67% 79.167% 75% 
LR 72.916% 91.67% 70.83% 83.33% 
MD 64.58% 66.67% 37.5% 58.33% 

 
 
Interesting finding is notated that accuracy of the MLP classifier increased with increasing the 

training set size, then decreased vastly. The same thing can be said about LR and MD methods with some 
nuance change. The LR performed better than MD. In addition, it gives also better results where the training 
set is quite few. 

 
3.3.2. Authorship attribution using N-gram features 

To investigate impact of the training sets size on AA using word N-gram. Indeed, the value of the 
gram can be selected randomly. However, to capture more words, we adjusted the n-gram to be five. Table 2 
shows the performance of classifiers regarding each training set. Table 3 summarizes the statistical features 
of the used dataset. The word size ranges widely. It varies from 11 words to 1500 words per texts. 

 
 

Table 2. Performance of classifiers with N-gram 
Classifier Type TS4 TS3 TS2 TS1 

MLP 89.58% 91.67% 91.67% 100% 
LR 89.58% 91.67% 87.5% 100% 
MD 95.83% 94.44% 95.83% 100% 

 
 

Table 3. Statistical features of dataset 
Statistical 
Features 

Textual Data Feature 
# words # sentences Avg. words/sent. # paragraphs Avg. words length 

Mean 125.26 4.51 28.04 12.4975 4.514755 
St. Dev. 147.73 3.2850 22.115 12.5138 0.2897 
Variance 21824.9 10.79 489.079 156.596 0.08395 

Max. 1844 31 195.5 160 5.585 
Min. 11 2 4.75 160 3.761 

 
 
Comparing the classifiers' performance with n-gram with their performance with WLF, we note an 

improvement in AA accuracy. However, with increase the training set size the performance deteriorated. 
Furthermore, the MD method overcomes other classifiers even with increasing the training set size as shown 
in Figure 3. 

 
 

 
 

Figure 3. Classifier Performance with N-gram feature 
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3.3.3. Authorship attribution using POS features 
With POS method, the performance of the classifiers are different. Both the accuracy of MLP and 

LR methods increases with increasing the training set size until a certain point, then decreases again with 
increasing the size. The MLP classifier decreases significantly comparing with LR. On the opposite, the MD 
method shows a different behavior. The accuracy of MD classifier is still better than other classifiers as 
shown in Figure 4. 

 
 

 
 

Figure 4. Classifier performance with POS 
 
 
3.3.4. Authorship attribution with all features 

In this part, we investigate performance of the classifiers with different combination. Table 4 
summarizes all the finding results with different combinations. In most cases, the LR overcomes the other 
classifiers. The MD provides low performance accuracy, especially when the WLF features combined with 
POS. In general, combining POS with N-grams enhances the performance of attribution task. However, the 
accuracy is still lower than the WLF and n-gram combination. It is also notable that the classifier's 
performance affected negatively with increasing the training set size. In contrary, applying the full 
combination of WLF, N-grams, and POS lead to decreasing the accuracy of AA. 

 
 

Table 4. Performance of classifiers with different combination 
Training Sets (TS) 

Methods 
TS1 TS2 TS3 TS4 

69.44% 83.33% 91.67% 83.33% MLP WLF+N-gram 
62.5% 83.33% 91.67% 66.67% LR 

41.67% 60.42% 61.11% 50% MD 
58.33% 66.67% 83.33% 79.167% MLP WLF+ POS 
48.61% 70.83% 86.11% 79.167% LR 
34.22% 41.67% 47.22% 37.5% MD 
66.67% 83.33% 69.44% 87.5% MLP All 
62.5% 87.5% 94.44% 62.5% LR 

30.56% 56.25% 61.11% 41.67% MD 
79.17% 81.25% 91.67% 91.67% MLP n-gram + POS 
86.11% 79.17% 91.67% 87.5% LR 
62.5% 62.5% 77.78% 75% MD 

 
 

4. COMPARISON WITH OTHER WORKS 
As conclusion of the previous sections, we found that combining word-based stylomatric features 

with n-grams provides the best accuracy reached in average 93%. Thus, current section compares 
performances of those classifiers that are used in the reviewed works with our findings in term of accuracy. 
Even if they obtained come from different datasets, the comparison gives an indication of the performance of 
the different methods. Table 5 presents the comparison regardless the text size. It presents accuracy of the 
used classifiers of those works mentioned throughout this paper regardless the text size, whilst Table 6 
present the accuracy taking in consideration the same text size. 
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Table 5. Comparison of the best reached accuracy in this work with accuracy of other methods regardless the 
text size 

Reference Accuracy Data  
Our Work 100% Islamic Fatwas collected from Dar Al-ifta AL Misriyyah website 
Shaker and Corne [2] 87.63% Arabic books obtained from the website of the Arab Writers Union 
Abbasi and Chen [3] 85.4% Arabic web forum messages from Yahoo groups 
Stamatatos [4] 93.4% Arabic newspaper report of Alhayat 
Ouamour et al. [5] 100% Ancient historical books in Arabic  
Altheneyan and El Bachir Menai [12] 97,84% Arabic books collected from Alwaraq website 

 
 

Table 6. Comparison of the best reached accuracy in this workwith accuracy of other methods regarding the 
text size 

Reference Accuracy Data Size 
Our Work 93% [11-1500] words per document 
Ouamour et al. [5] 80% [100-1500] words per document 
Al-Ayyoub et al. [8] 59.8% Up to 140 words per tweets   

 
 

5. CONCLUSIONS AND FUTURE WORK 
This study has investigated the effect of increasing training set size on performance of authorship 

attribution classifiers. The experiment was designed to measure accuracy of classifiers with short Arabic 
texts. It was also designed to investigate the performance of AA classifier using different combination of 
stylomatric features. We limited our experiment to assess three well-known classifiers, namely linear 
regression, multilayer perceptron, and Mahanolobis distance. However, the research methodology is still 
valid with other classifiers.   

The overall results show that the classifiers have different behaviors regarding the used AA features 
and training set size. The MLP classifier exceeds the other classifiers when the WLF features are used. The 
MLP, to a certain point, is positively affected by the increase in the training set size, then decreased. The n-
gram methods lead to decreasing the classifiers' performance with increasing the training set size. However, 
generally speaking, the n-gram features provide the best results among the all stylomatric features. With POS 
features, the classifiers show different behaviors. The MLP classifier decreases significantly compared with 
LR. On the contrary, the MD shows a different behaviors and provides better accuracy than MLP and LR. 

We also applied the classifiers with different features combination (WLF+ n-Gram, WLF+ POS, n-
Gram+ POS, and a set of all features). The MD provides low accuracy especially when the WLF features 
combined with POS. Combining POS with N-grams improves the performance of attribution task. Contrary 
to the expected results, applying the full combination of WLF, N-grams, and POS leads to decreasing the 
accuracy of AA. 

For future work, we intend to extend the experiments to investigate accuracy of other classifiers and 
to a larger training set. We also plan to investigate the impact of other feature selection methods on the 
performance of the AA problem. 
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