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 This paper designs a siting scheme for public electric vehicle chargers based 

on a genetic algorithm working on charger monitoring streams. The 

monitoring-combined allocation scheme runs on a long-term basis, iterating 

the process of collecting data, analyzing demand, and selecting candidates. 

The analysis of spatio-temporal archives, acquired from the fast chargers 

currently in operation, focuses on the per-charger hot hour and proximity 

effect to justify demand balancing in geographic cluster level. It leads to the 

definition of a fitness function representing the standard deviation of per-

charger load and cluster-by-cluster distribution. In a chromosome, each 

binary integer is associated with a candidate and its static fields include the 

index to the cluster to which it is belonging. The performance result obtained 

from a prototype implementation reveals that the proposed scheme can stably 

distribute the charging load with an addition of a new charger, achieving the 

reduction of standard deviation from 8.7 % to 4.7 % in the  

real-world scenario. 
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1. INTRODUCTION  

For the penetration of EVs (Electric Vehicles), it is necessary to build a well-organized charging 

infrastructure over the target area [1]. Besides slow AC chargers usually installed in drivers’ homes for 

overnight charging, high-voltage DC chargers are working in public places under the control of responsible 

authorities [2]. Insufficient charging capacity brings unacceptable waiting time to EV drivers, mainly due to 

long charging time which lasts tens of minutes for a single transaction even with fast DC chargers. Hence, 

many countries are trying to install DC chargers in appropriate places. At first, they select those places easy 

to supply power and guarantee electrical safety [3]. Then, the penetration of EVs will create a specific 

demand pattern, which must be considered for the next step charger installation. As such, charger expansion 

and demand pattern will interact with each other repeatedly, making it essential to keep analyzing the 

demand behavior of a target charging infrastructure. 

Most modern facilities, not restricted to charging stations, are connected to a management 

coordinator via ubiquitous and cheap communication channels [4]. In our city, namely, Jeju, Republic of 

Korea, which is making an extensive effort to prompt the deployment of EVs, many chargers are under 

construction and report their real-time working status to a central server [5]. Currently, 245 DC chargers are 

embraced in this management domain and their status records are accumulated every 5 minutes. Our research 

team acquires the permission to use this archive, stores in our local database tables, and combines geographic 

information for sophisticated stream analysis with relevant tools such as R and Tensorflow [6]. In this work, 
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we are to exploit the monitoring data stream for the location selection of new public chargers to overcome the 

weakness of EVs in charging, compared with gasoline-powered vehicles. 

It must be mentioned that the site selection has to take into account a variety of factors, mainly due 

to the fact that chargers are high-voltage devices. As for existing related work for this aspect, Florida Power 

& Light Company lists the critical factors to consider in deciding charger installation places [7]. The list 

includes visibility and lighting, proximity to power sources, parking space size, weather and climate, 

electrical safety, ventilation, and the like. In addition, Transportation and Climate Initiative also chooses 

selection criteria for charging stations [8]. This report addresses connections to power, networks and 

communications, interdependency with existing infrastructure, and EV interfaces. Besides, the weight from 

above-mentioned factors will be different region by region and depend on the forecast on the population 

growth, customer need change, and new technology appearance. 

In addition, as for related work for public charging, [9] tries to maximize the electrification rate, or 

the travel distance covered by EVs charged at new charging stations. This research is built on the analysis of 

millions of trips taken by about 11,000 taxis in Beijing. The authors investigate the underlying charging 

demand over the city area as well as to locate hot spots for the demand. The analysis selects those areas 

where many taxi drivers are likely to stay for a rest as new charging stations, under the assumption that 

drivers will possibly move 1 mile to take preferred chargers when necessary. In addition, [10] formulates a 

mathematical model to find optimal solutions for siting charging stations, achieving about 50 % improvement 

in the electrification rate. This work defines the objective function based on the travel distance that cannot be 

covered by any EV charging for the given station placement. The formulation is fed to a mixed integer non-

linear programming solver to find an answer. 

As far as we know, there is no work directly taking into account the current demand pattern in 

determining the location of additional chargers. Even if the data is available, it is not easy to find an optimal 

goal for this problem. This paper attempts to identify a charge placement which can distribute the charging 

load over the target area. With this goal definition, a genetic algorithm is designed to find a suboptimal 

solution within an acceptable time bound. 

This paper is organized as follows: After overviewing the main issue in Section 1, Section 2 shows 

the data analysis results to be considered in charger siting. Then, Section 3 conceptually designs a cluster-

integrated siting scheme for EV chargers. Finally, Section 4 summarizes and concludes this paper with a brief 

description on future work. 

 

 

2. DATA ANALYSIS 

To begin with, Figure 1 shows the location of chargers in Jeju City, which is surrounded by about 

200 km long coastline. The meaning of each symbol will be explained later. Here, the road network is 

downloaded from the open data site in an ESRI shape file format and plotted on the R workspace. The 

charger distribution coincides with the population density, displaying high concentration in the center north 

region. Many chargers are installed at the local government branches as it is easy to get endorsement for EV 

charger establishment. They are mainly used by local residents. In addition, as Jeju is one of the most famous 

tour places in East Asia, a lot of tourist attractions provide charging equipment for EV-driving visitors. 

According to our observation, demand peak of DC charging arises between 4 PM and 6 PM, slightly 

deviating the grid peak hours. 

 

 

 
 

Figure 1. Charger location and expected load 
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Figure 2 plots the occupancy rate of each charger. Occupancy rate, analogous to the charging 

demand or load, denotes how many records are indicating that a charger is currently working out of total 

records. In the figure, each dot corresponds to a single charger. For a charger, the hot hour, in which its 

occupancy rate touches highest, is obtained first. Then, the hot rate is plotted on a virtual vertical line of the 

corresponding hour. Chargers having a common hot hour appear on the same line. We can see more dots than 

others between 16 to 18. By this figure, most chargers are used between 8 to 21. About 20 chargers have the 

occupancy rate below 0.05 even in their hot hours, while some others exceeding 0.6. One of the goals of the 

siting scheme may lie in the reduction of the occupancy rate gap. 

 

 

 
 

Figure 2. Hot hours and occupancy rate 

 

 

Next, Figure 3 traces the occupancy rate according to the distance to the closest charger. Here again, 

a single dot represents a single charger. As the distance is an analog value, dots are scattered over the graph 

space. The most isolated charger is apart from its closest neighbor by 5.8 km. Those chargers installed in the 

same building or office appear on the vertical line of 0 km. As can be seen in the figure, the distance to the 

closest neighbor has little dependency on the occupancy rate. Even though there are not so many cases, when 

a charger is newly installed, the occupancy rate around the charger increases together. Drivers seem to want 

to charge at a vicinity of higher charger density.  

 

 

 
 

Figure 3. Proximity and occupancy rate 

 

 

3. SITING SCHEME 

3.1.  Main idea 

Figure 4 outlines the sequence of the siting process. For a current charger distribution, the procedure 

collects the monitoring data and conducts necessary analysis. Here, additional information such as population 

growth and EV penetration is integrated into the monitoring series. Then, performance metrics are defined 

for the selection of new charger locations. The metric includes waiting time reduction, proximity 

improvement, demand balancing, and the like. Here, the annual budget of the charger operation authority 

decides the number of chargers to build. Then, a human decision maker recommends all possible candidate 

locations according to the above-mentioned criteria. Two or more chargers can be listed in a same place. 
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Here, each selection of a charger can affect the remaining others. The estimation of this effect is a very 

complex problem, so we take a suboptimal approach [11]. Moreover, the effect of a new allocation is 

different according to whether it is inside a cluster or not, as chargers belonging to a same geographic cluster 

tend to evenly share the load. 

 

 

 
 

Figure 4. Charger siting process 

 

 

A pair of chargers apart from each other less than 1.6 km belong to a common cluster. A driver will 

move to the other charger when one charger occupied if the distance between them is less than 1.6 km[9]. Out 

of 245 chargers, the analysis finds 68 clusters as shown in the map of Figure 1. There are 3 big clusters, one 

having 61 chargers in center north, the other two each having 15 and 10 in center south, respectively. Figure 

5 shows the standard deviation in occupancy rates of chargers within each cluster. Those clusters containing 

just one charger have no deviation. The deviation is at most 0.18 and the charging demand is quite evenly 

shared within a cluster. There are exceptional cases when some chargers become out-of-service from time to 

time. After all, the new charger selection can be differentiated into two cases, one adding to a cluster and the 

other to an independent place. 

 

 

 
 

Figure 5. Per-cluster standard deviation in occupancy rate 

 

 

The load is recalculated so that the charger in a single cluster has the equal occupancy rate by 

averaging all of cluster members. We can estimate the increase in the demand change stemming from the 

penetration of Evs just in cluster level, not in charger-level. According to the enterprise schedule, Jeju city 
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will increase the number of EVs by 1.5 times next year, and so will the citywide load. Assuming the cluster-

level demand increases by that ratio, the recalculated per-cluster load is displayed also in Figure 1. The 

clusters forecasted to have larger than 0.5 in the occupancy rate appear all over the target area. It means that 

EV drivers will wait statistically more than one out of two times. 

 

3.2.  Genetic operation 

Our scheme represents a site selection as a binary integer vector as shown in Figure 6. Here, m is the 

number of all candidates and equals to the length of the vector, while n is that of selected locations denoted 

by 1’s. Each location candidate is associated with static information such as latitude, longitude, and cluster id 

if it is included in a cluster. The cluster id makes it possible to refer to the cluster record consisting of the 

number of member chargers, average load, and cluster centroid. Figure 6 also shows the crossover operation 

designed for the genetic algorithm. In this example, m and n are 13 and 6, respectively. The first part contains 

the vector for those candidates included in a cluster while the latter not. As two parts are assessed differently, 

crossover operations take place twice, namely, at (C1, C2) and (C3, C4). After switching substrings, the 

number of 1’s is highly likely different from n. Then, some of them will be changed to make  

the allocation valid. 

 

 

 
 

Figure 6. Genetic operation 

 

 

As for the fitness evaluation of a chromosome, or a single integer vector, the effect of each gene is 

interpreted as shown in Figure 7. If a candidate is inside an existing cluster, it first draws the load in a cluster. 

For example, if the number of member chargers is 2 and the average load is 1.2, the addition of a new node in 

that cluster will cut down the average load to 0.8. Then, not just relieving the load in a cluster, a new charger 

can absorb the charging demand from adjacent chargers. In this example, the cluster can afford to share the 

load from its neighbors outside of its cluster by 0.2 ｘ 3. It’s called leftover. While it is impossible how much 

load will migrate to neighboring nodes, it can be expected that the closer to a charger, the  

more load can move. 

 

 

 
 

Figure 7. Evaluation process 
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A linear load migration is designed based on the distance between two chargers or clusters, as 

shown in Eq. (1). 

 

𝑝𝑎 = 𝑝𝑛  ×  
𝑈−𝑑

𝑈−𝐿
         (1)  

 

, where Pn is the overloaded demand of a neighboring charger or cluster, and Pa is the migratable amount. [L, 

U] is the range a new charger addition will be in effect. Here, a cluster is considered a single charger with its 

centroid acting as a position value of a charger. d is the distance to a new charger and only chargers residing 

in [L, U] will be considered. If d is U, Pa is 0, which indicates that the new charger cannot take load from that 

charger. If it is L, all overloaded amount can be shared. The sum of all Pn cannot exceed the amount of 

leftover. The fitness value of a new charger addition will be the sum of the load shared in a cluster (if it is 

inside a cluster) and the load drawn from its neighbors. The genetic operations iterate to improve the fitness 

value generation by generation with the object function and encoding scheme. 

 

 

4. PERFORMANCE MEASUREMENT 

This section measures the performance of the proposed scheme by a prototype implementation using 

the C programming language. For simplicity, we assume that we can select any place for a new charger 

installation. Hence, the distance within a cluster does not matter. For n chargers to add, how to assign them to 

respective clusters is the main problem. The default parameters are as follows: The number of new chargers 

is 50 and that of clusters is 78, derived from the current placement in Jeju. The population size is 100, while 

the genetic loop iterates 1,000 times. In addition, occupancy rate is the probability that a charger is used and 

denotes the charging demand on a charger [12]. 

The first experiment measures the basic behavior of the genetic iteration. Figure 8 plots the 

improvement in the standard deviation in the occupancy rate of each charger according to the progress of 

genetic iterations. It will show how evenly the charging load is distributed over the target area with the 

addition of new chargers. Currently, the standard deviation of the occupancy rate for 245 chargers is 8.7%, 

while the total average is 36.0 %. With an addition of a new charger to a heavy-loaded cluster, the charging 

load is distributed. At the first stage of the genetic iteration, the standard deviation is 10.56 %, higher than the 

current value, indicating tht an inappropriate assignment makes worse the difference in the utilization. 

However, repeated execution of genetic operations improves the performance, reaching 4.7 % after 250 

iterations. Beyond this point, no more improvement is observed. 

 

 

 
 

Figure 8. Iterative improvement 

 

 

Next, Figure 9 shows the effect of the population size in genetic operation. A larger population leads 

to a better gene diversity. Actually, our implementation prevents duplicated chromosomes from taking place 

at the same time for the sake of making the population set more diverse. Moreover, the length of a 

chromosome is 78, namely, the number of clusters. It is quite long and possibly hosts a variety of solutions. 

However, the figure shows that the population size has little effect on the standard deviation improvement. 

Even with 50 chromosomes, we can achieve the same improvement as with 500 chromosomes. This comes 

from the situation that a few clusters dominate the whole occupancy rate. 
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Figure 9. Population size effect 

 

 

Finally, Figure 10 plots how the proposed scheme can stably improve the load distribution with a 

new charger installation. The experiment changes the number of new chargers from 10 to 200.  In each 

parameter setting, our scheme finds a reasonable quality suboptimal solution with 1,000 iterations. The 

standard deviation starts from 7.26 % with 10 chargers and ends up at just 1.6 % with 200 chargers. The 

performance curve is totally continuous, having no exceptional oscillations or spikes.  

 

 

 
 

Figure 10 Charger addition 

 

 

5. CONCLUSION 

In this paper, we have presented a conceptual design of a siting scheme for public EV chargers, 

mainly based on the analysis result of charger monitoring streams. A genetic algorithm is exploited to 

overcome the difficulty in estimating the effect of a charger placement, while a fitness function is defined for 

the evaluation of a charger location according to whether a charger is inside of any cluster or not. The 

accumulation of more monitoring series will refine our evaluation model and reveal the effect of a new 

charger installation, making the process of charger siting a cyberphysical system approach [13]. Moreover, 

our research team is developing a variety of business models based on the massive data analysis, including 

the advertisement and tourist goods trade during the lengthy charging time. Particularly, we are planning to 

integrate renewable energy into the charger operation, including location determination, battery 

charger/discharge scheduling, and the like [14]. 
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