
International Journal of Electrical and Computer Engineering (IJECE) 
Vol. 6, No. 5, October 2016, pp. 2379~2386 
ISSN: 2088-8708, DOI: 10.11591/ijece.v6i5.11741      2379 

  

Journal homepage: http://iaesjournal.com/online/index.php/IJECE 

Stochastic Approach to a Rain Attenuation Time Series 
Synthesizer for Heavy Rain Regions 

 
 

Masoud Mohebbi Nia1, Jafri Din1, Hong Yin Lam2, Athanasios D. Panagopoulos3 
1Wireless Communication Center, Faculty of Electrical Engineering, 81310 Universiti Teknologi Malaysia,  

Johor Bahru, Johor, Malaysia 
2Departement of Electrical Engineering Technology, Faculty of Engineering Technology, 86400, Universiti Tun Hussein 

Onn Malaysia, Parit Raja, Johor Malaysia  
3School of Electrical and Computer Engineering, National Technical University of Athens, Zografou, Athen, Greece 

 
 

Article Info  ABSTRACT

Article history: 

Received May 16, 2016 
Revised Jul 4, 2016 
Accepted Jul 20, 2016 
 

 In this work, a new rain attenuation time series synthesizer based on the 
stochastic approach is presented. The model combines a well-known interest-
rate prediction model in finance namely the Cox-Ingersoll-Ross (CIR) 
model, and a stochastic differential equation approach to generate a long-
term gamma distributed rain attenuation time series, particularly appropriate 
for heavy rain regions. The model parameters were derived from maximum-
likelihood estimation (MLE) and Ordinary Least Square (OLS) methods. The 
predicted statistics from the CIR model with the OLS method are in good 
agreement with the measurement data collected in equatorial Malaysia while 
the MLE method overestimated the result. The proposed stochastic model 
could provide radio engineers an alternative solution for the design of 
propagation impairment mitigation techniques (PIMTs) to improve the 
Quality of Service (QoS) of wireless communication systems such as 5G 
propagation channel, in particular in heavy rain regions. 
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1. INTRODUCTION 

Current and future wireless communication systems such as 5G cellular networks and satellite 
communication system are moving toward higher speed data rates and wider bandwidths with the 
employment of operating frequencies above 10 GHz [1]. Unfortunately, radio link operating at these 
frequencies suffer strong attenuation phenomena due to the atmospheric constituents such as rain, cloud, 
water vapour and turbulent fluctuations/scintillation [2]-[5]. Among these, rain appears as the major factor 
that degrades the performance of wireless communication systems [2]. This impairment is even worse in 
heavy rain regions where the precipitation characteristics are significantly different from those in temperate 
areas [6]-[8]. In order to counteract such impairments that depend on the local climatology, detailed dynamic 
characteristics of precipitation are required to serve as the critical input to the advanced propagation 
impairment mitigation techniques (PIMTs) [2]. A signal measured directly from the communication system is 
the best resource for this purpose. However, such measured signals are not widely available; therefore, the 
propagation community proposed the synthetic rain attenuation time series to mimic the dynamic of real 
signals. 

For the past decade, various studies have focused on the development of rain attenuation time series 
synthesizers [9]-[11]. Eventually, in 2009, International Telecommunication Union-Radio communication 
(ITU-R) recommended a stochastic approach to generate rainy and clear-sky time series [12]. Since then, 
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several extended works have continued to improve on this series and proposed more refined synthesized time 
series. Carrie et al. extended the ITU-R model to an event-on-demand synthesizer in order to generate time 
series according to the demand of maximum attenuation level and event duration [13]. Boulanger et al. 
proposed a new time series synthesizer based on the combination of Dirac and lognormal distribution [14]. 
While in tropical areas, Andrade et al. proposed a model based on the gamma distribution where the model 
parameters were inferred from the real measured data collected in Brazil [15] and Kanellopoulos et al. 
presented a new stochastic dynamic model for the generation of rain attenuation time series based on the 
powerful solution of first-order stochastic differential equation (SDE) for the long-term Markov process [16].  

In this work, we proposed an alternative and promising stochastic approach to synthesizing long-
term rain attenuation time series, mainly focusing on areas that exhibit extreme heavy rainfall. The model 
presented here is an extended application of a well-established long-term interest rate generation model in 
financial research [17]. The Cox-Ingersoll-Ross model, hereinafter named “CIR”, reproduces the dynamic 
characteristics of local precipitation with respect to the precipitation-attenuation phenomena. 

The paper is organized as follows. First, we present the concept and principles of the CIR stochastic 
model as a rain attenuation time series synthesizer. General solutions and dynamic parameter computations 
of the model are explained in Section 3, followed by a brief discussion on the long term statistics of this 
model in Section 4. Section 5 present the numerical results validated against measured data in equatorial 
Malaysia and finally Section 6 draws some conclusions. 
 
 
2. STOCHASTIC MODEL OF TIME SERIES SYNTHESIZER 

In this work, the long-term complementary cumulative distribution function of rain attenuation is 
assumed to be gamma distribution as this is the well-established statistical distribution in heavy rain regions 
[16]. Hence, such distribution of satellite and terrestrial links can be described by a first-order stochastic 
differential equation (SDE): 

 

1 2( ) ( )t t t tdX D X dt D X dW                                                                                                                                 (1) 

  
where D1, and D2 are drift and diffusion coefficients respectively representing slow and rapid varying 
components of the rain attenuation time series [18]. dWt is the Brownian motion  or Wiener process that 
follows the normal distribution with zero mean and variance dt [18],[19]. In this particular application, a 
satellite/terrestrial channel usually considered radio signals appearing in the form of additive white Gaussian 
noise (AWGN), hence the variance of the Wiener process can be assumed to be equal to 1 while Xt represents 
the rain attenuation time series. Hence dt is equal to 1. 

Based on these properties of distribution, the CIR model that is capable of generating a time series 
of interest rate over a long duration (i.e. more than 10 years) according to gamma distribution is clearly one 
of the best alternative tools to predict rain attenuation time series. This well-established model in finance and 
economics represents the first-order SDE as follows [17]: 

 

( )t t t tdX k X dt X dW                                                                                                                                                  (2) 

 
where k,  and  are the three empirical parameters that could be inferred from the experimental rain 
attenuation dataset as a function of the transmission/receiving links elevation angle, polarization as well as 
operating frequency. It is also worth noting that k corresponds to the dynamic factor  of rain attenuation as 
clearly explained in [20]. Nevertheless, in the absence of experimental databases, several tools developed by 
propagation researchers such as synthetic storm techniques which only require  the input of time series rain 
rate measured by local rain gauges, could also provide sufficient accuracy for the extraction  of those 
parameters [6],[21]. The next section briefly discusses the general solution and methodology inferred by the 
CIR model parameters. 
 
 
3. CIR MODEL PARAMETERS ESTIMATION AND GENERAL SOLUTION 

One relevant issue for the modelling of a rain attenuation time series synthesizer is the long term 
distribution of first order rain attenuation statistics. In particular, these statistics in heavy rain regions seem to 
follow gamma distribution as observed in several previous works [15],[16]. For this reason, since the CIR 
model is an ergodic process with a stationary distribution, as the dynamic parameter k approaches the long 
term mean value of rain attenuation, the synthesized rain attenuation will approach gamma distribution.  
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In general, since rain attenuation over the period of time can be described by the Weiner process 
(Brownian motion), Ito’s process allows for the solution of the differential of a time-dependent function of 
rain attenuation process  by the well-known approximation method Euler-Maruyama [18],[19]. Euler-
Maruyama approximation could provide the simplest yet strong Taylor approximation series as 

 

1n n n n n nY Y kY Y W                                                                                       (3) 

 

1n nnW W W                                                                                                (4) 

 

 2( W)n nE                                                                                              (5) 

 
To simulate a predicted rain attenuation time series for n = 0,1,2,…N-1, we simply start from the 

initial condition Yo=Xo and proceed to the next values. This is an Ito process with drift k and diffusion   

coefficient.  
After considering the theoretical estimation, two different techniques could be practically deployed 

to predict the SDE model parameters namely the Maximum Likelihood Estimation (MLE) [22] and the 
Ordinary Least Square (OLS). MLE is commonly employed to estimate multistep ahead forecasts. This 
approach determines the model parameters based on the most likely probability from the measured dataset. 
On the other hand, OLS estimates the model parameter from a linear regression by means of minimizing the 
difference between the measured data and the estimated values [23]. Simulation results of both approaches 
are subsequently shown in Section 5. 

 
 
4. GENERATION OF FIRST ORDER LONG-TERM RAIN ATTENUATION STATISTICS 

Before we further analyse the simulation results, it is worth discussing the reliability of long-term 
first-order rain attenuation statistics produced by the CIR model. In the planning and design of a wireless 
communication system, a reliable long-term CCDF of rain attenuation is of the utmost importance [24]. In 
order to regenerate such long-term statistics, the rain attenuation is usually described by a relative simple 
first-order Markov process [9],[16]. Hence it is best to represent the statistics in the form of the Ornstein-
Uhlenbeck process [19]. This is the only stochastic process that satisfies the properties of stationary, 
Gaussian and Markov processes.  

The CIR model assumes that if the observation period t is long enough (t →∞) , and the rain 
attenuation approaches the mean values of long-term observation data m, the model can be simplified, by 
replacing Xt with m: 
 

( )t t tdX k X dt mdW                                                                                                  (6) 

 
This is also known as the Vasicek model [25] which was previously introduced to describe interest 

rate movement in finance and is now adapted to describe the dynamics of rain attenuation levels. The general 
solution of the SDEs with homogeneous coefficients and additive noise can now be written as: 

 

0
(1 )

tkt ks
t o sX x e m e dW                                                                         (7) 

 
The integral of the Weiner process can be solved using Euler-Maruyama approximation from the 

long-term measurement data. The mean  and variance  of the time series synthesizer from (7), which deals 
with the Brownian/ Wiener process, can be solved by using Itō integral from Itō lemma as [18],[19]: 
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ox e e                                                                                                   (8) 
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Figure 3. Probability density functions (PDFs) of attenuation threshold generated by the MLE and OLS 
approaches and compared with the measured PDF of the MEASAT satellite 

 
 

In order to further evaluate the effectiveness of the CIR model from a propagation perspective, 
testing has been carried out by comparing long term CCDFs of rain attenuation between the CIR model 
(MLE), the CIR model (OLS) and the measured CCDF. The ITU-R Rec. P.618-12 [27] is also included in the 
comparison as this recommendation served as the main reference model for the prediction of first-order rain 
attenuation statistics. The results in Figure 4 clearly indicate the effectiveness of the CIR model with the OLS 
approach compared to the one with the MLE method. The OLS approach provides good agreement prediction 
with the measurement statistics while the MLE method marked an overestimation. On the other hand, ITU-R 
Rec. P.618 clearly underestimates the slant-path measured statistics, which highlights the importance of 
locally-derived parameters in providing statistics with better accuracy. 

 
 

 
 

Figure 4. Comparison of Complementary cumulative distribution functions (CCDFs) of rain attenuation: 
MEASAT measured, the CIR model (MLE), the CIR model (OLS) and ITU-R recommendation 

 
 

Figure 5 subsequently shows the error of the prediction with respect to the time percentage from 
0.001% to 1%.  As can be seen, prediction errors of the MLE approach are obviously higher than those 
predicted by the OLS method. This can be ascribed to the shortcoming of the MLE method in that it does not 
accurately describe the density of each attenuation threshold (see Figure 3). For these reasons, as clearly 
mentioned in [23], most of the estimations of auto regression parameters prefer the OLS approach. 
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Figure 5. Error percentage comparisons between MLE and OLS method across different time percentage 
 
 
6. CONCLUSION 

This work presents a new stochastic approach for the generation of a rain attenuation time series, mainly 
focusing on the area of extremely heavy precipitation, in particular equatorial Malaysia. This new model 
employed the well-known CIR model frequently used in economics to reproduce a long-term time series of 
rain attenuation, the parameters of which were derived by the MLE method and the OLS approach. The 
model has been compared with a local experimental database in terms of first-order rain attenuation statistics 
recorded from the MEASAT satellite link. The predicted long-term statistics by the OLS method are found to 
be in good agreement with the measured attenuation statistics while the MLE tends to overestimate the 
measurement results. The achieved results offer communication system designers an alternative model 
utilizing locally derived parameters with better accuracy for the prediction of long-term rain attenuation 
statistics for satellite channels as well as 5G cellular channel in heavy rain regions. 
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