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 This study investigated optical sensor system consist of sixteen light emitting 

diode (LED) in visible/near infrared region to detect palm oil fresh fruit 

bunch (FFB) quality. Practically, experience grader assessed FFB quality by 

its ripeness based on external features such as colour and number of detached 

fruitlets. However, different seed and plantation management resulting in 

FFB quality variation. Same external features not linearly correlate with FFB 

oil content that corresponding with industrial needs. The 660 nm LED is 

choosen to be used to estimate the oil content of FFB. Using linear 

discriminant analysis (LDA) with Mahalanobis distance, the accuracy of the 

systems is 79.8% and 88.2%. From 33 FFB oil content measurement, grader 

misclassified 4 out of 17 FFB as ripe FFB but with low oil content (<17.5%) 

and misclassified 7 out of 16 FFB as unripe but with high oil content 

(>=17.5%). Classifying model build from FFB from main plantation then 

tested to evaluate FFB from smallholder. Classification model generated 

from FFB oil content data showed more accurate result compared to model 

generated from visual inspection 66.7% compared to 52.1%. Model 

accuracies attained by Discriminant Analysis (DA) and k-Nearest Neighbors 

(k-NN) were 79.8% and 80.7%, respectively based on grader evaluation. 

Model accuracies based on FFB oil content was 88.2% for both 

classifying algorithms. 
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1. INTRODUCTION  

According to The United States Department of Agriculture, in 2016, Indonesia supplied more than 

half of the global palm oil market [1]. Palm oil Fresh Fruit Bunch (FFB) quality depends on quantity and 

quality of oil that can be extracted from the bunch. Ripe FFB has more oil than unripe bunch and have less 

free fatty acid compared to overripe bunch [2]. Oil content in palm oil mesocarp and kernel increases along 

with palm oil fresh fruit bunches (FFB) ripening process. One of ripeness indication is when fruitlets easy to 

detached from the bunch be seen in Figure 1. Bunches with 50-200 loose fruits had oil/bunch 1.9% higher 

than a bunch with one loose fruit [3]. 

There are three palm oil varieties, that are nigrescens, virecens, and albenscens. The ripeness of 

virecens and albenscens varieties can be seen by the color. For virecens, the color of the FFB turn to orange 

when its ripe. Sabri, et al. has developed camera-based system to detect the FFB ripeness [4]-[12]. 

In Indonesia, the virecens and albenscens is very rare. The most variety that is grown in Indonesia is 

nigrescens variety. It is very difficult to assess the FFB ripeness of this variety. There is no color changing 

when it is under-ripe, ripe, and over-ripe. 
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Figure 1. Ripe palm oil fresh fruit bunches with detached fruit 

 

 

In practical, industry purchased palm oil FFB from smallholder based on FFB ripeness. 

Conventionally, oil palm FFB ripeness assessed by grider by counting the number of detached fruits per 

bunch and discoloration. Unripe and overripe FFB return to small holder. Because of grader only look at 

external feature of FFB, smallholder can detached fruit from FFB so it seen like ripe FFB. This grader 

approach is so subjective. So, the main problem or research question is how to classified the FFB ripeness of 

the nigrescens variety objectively.  

There are some non-destructive techniques to classified FFB ripeness have been studied by many 

researchers. Junkwon, et al. introduce hyperspectral-based to grade the FFB ripeness. They found that the 

classification for four level of FFB ripeness can be done using reflectance value of Near Infrared (NIR) 

spectrum at 750 nm and develop the model for oil content prediction [13]. But, hyperspectral imaging tends 

to have redundant feature and make decreasing in classification accuracy [14]. In 2014, Makky and Soni 

record diffuse reflectance using fiber reflection probes that provided spectral information between 250 and 

1000 nm. They successfully classified seven fraction FFB ripeness using spectral information from 400, 540, 

560, 590, 670, 800, 910, 940 and 1000 nm. And also, they develop a model for oil content prediction using 

spectral data from 440, 470, 480, 510, 610, 690, 720, 750, 760, 880, 900, 910, 940, 980, 990 and 

1000 nm [15]. Chemometric analysis using visible and near infrared spectrum were used to obtain internal 

properties of FFB. It is important to introduce the current technology in palm oil industry. The ultimate goals 

are to increase the palm oil plantation and factory [8]. In practical application, the rapid and non-destructive 

NIR technique has potential use for classifying oil palm fresh fruit into ripeness grades. Non-destructive and 

rapid NIR technique can be used to classify FFB maturity level [16]-[23]. Figure 2 shows the proposed 

systems that is consists of a silicon based photodetector and 16 LEDs designed in the same plane. 

 

 

 
 

Figure 2. Proposed systems 

 

 

2. RESEARCH METHOD 

2.1.  Sample preparation and optical sensor 

This study was carried out on late March to early April 2016 in Riau Province, Indonesia. In this 

study 191 FFB collected with two ripeness categories, ripe and unripe. One hundred and twenty FFB sample 

were taken from main plantation and 71 FFB from smallholders. Ripeness class was determined by grader by 

visual inspection.  
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For each FFB, the spectral data are collected from two side of FFB. Output from the systems is 

voltage value, describe as relative reflectance value of FFB. Sixteen LED (light emitting diode) from 615 nm 

to 940 nm with about 20 nm interval were utilised. Combination visible and near infrared spectral have better 

potentiate for FFB ripeness estimation [24]. Chlorophyll, one of FFB pigment that change during maturity 

has common absorbance within visible spectrum between 600 and 700 nm [25]. Molecules interaction with 

electromagnetic radiation within NIR spectrum arise from overtones and combination bands O-H and C-H 

existed in moisture and oil [26].  

Figure 2 shows the proposed systems that is consists of a silicon based photodetector and 16 LEDs 

designed in the same plane. A 600 nm longpass filter placed in front of photodetector to transmit reflected 

light greater than 600 nm and reduce effect of ambient light from external source. The system was powered 

by 5 V DC and connected to computer for data acquisition and storage. Data collected from two side FFB, 

average of these two readings from each FFB used for further analysis. Total 262 spectral data were collected 

and divide into 191 data training and 71 data test. FFB spectral data from main plantation used for training 

data and tested for classifying FFB ripeness from smallholders. Classification based on visual inspection then 

will be compared to FFB oil content inspection. Twenty one sample from main plantation used as training 

data and 12 sample from small holder used as test data. Classification developed using Linear Discriminant 

Analysis (LDA) with Mahalanobis distance and k-NN algorithm using Euclidean distance with feature 

selection. Data analysis was done using SPSS Statistics 20. 

FFB oil content are determined through laboratory chemical analysis which are time consuming and 

labor intensive. Thirty three sample data collected for further analysis. Fruitlets were detached from the 

bunch and then weight. Thirty fruitlets randomly choose, 10 from outer, 10 from middle, and 10 from inner 

fruitlets as can be seen in Figure 3. Then, these fruitlets are chopped to separate the fruit’s mesocarp. 

Mesocarp then were dried to remove physical water from the mesocarp. The oil in the mesocarp was 

extracted using Soxhlet extractor with hexane as solvent. The remaining fiber and solvent were dried and 

cooled in the desiccator. Sample in every step were weighed. Oil in the mesocarp (Oilm) is  

calculated with (1). 
 

 

 
 

Figure 3. Palm oil spikelet with fruitlets 
 

 

%Oilm =
W2 − W3

W1
× 100% (1) 

 

where W1 is mesocarp sample weight (g), W2 is mesocarp weight after drying (g), and W3 is mesocarp 

weight after extraction (g). The crude palm oil recovery from the sample FFB is calculated using (2). 

 

%𝑂𝑖𝑙 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 =
∑ 𝑊𝑓

𝑊𝐹𝐹𝐵
× %𝑊𝑚 × %𝑂𝑖𝑙𝑚 (2) 

 

where WFFB is FFB weight (g), Wf is fruitlets weight (g), %Wm is percentage of mesocarp weight from 

fruitlets (%), and %Oilm is percentage of mesocarp oil (%). 

 

2.2.  Classification criteria 

The ripeness estimation basically used to get FFB with high oil content. Misclassification is 

conducted by the grader could be classifying ripe FFB despite of lower oil yield, vice versa. In this paper, we 

will investigate classification algorithm robustness based on external feature evaluated by grader and intrinsic 

criteria based on FFB oil yield. This flowchart of the classification algorithm can be seen in Figure 4. 
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Figure 4. Effects of selecting different switching under dynamic condition 

 

 

In this study, Euclidean and Mahalanobis distance were used to distinguish between model classes 

assessed by grader and FFB oil yield. Euclidean distance were used to cluster similar data points into the 

same clusters, while Mahalanobis measure dissimilar or distant data points are placed into different 

clusters [27]. Between two data point x and y, Euclidean distance measured by (3) and Mahalanobis distance 

measured by (4). 
 

𝐸𝐷 = √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

 (3) 

 

𝑀𝐷 = √(𝑥 − 𝑦)S−1(𝑥 − 𝑦)𝑇 (4) 
 

where S is the covariance matrix of the dataset. 

 

 

3. RESULTS AND ANALYSIS  

Average relative reflectance voltage value from 16 LEDs is used to differentiate two FFB ripeness 

categories, ripe and unripe. Using the box-and-whisker plots, outlier samples indicated as dot mark in the box 

plot were removed from the dataset. Thus total number of samples for ripe and unripe class was 57 and 52, 

respectively. Training dataset for FFB oil content were 17 FFB with oil content more than 17.5% (high oil 

content) and 4 FFB with oil content less than 17.5% (low oil content). Four high oil content outlier data 

removed from dataset. Voltage differentiation between two classes of ripeness almost found in all LED. 

The box-and-whisker plots of 615 nm, 635 nm, 660 nm, and 830 nm are shown in Figure 5. 

The differences of voltage value in visible region correlated with change of color due to chloropyll 

presence that have absorbance in 660 nm [10]. Palm oil FFB color become more reddish during ripening. 

According to the Ikemefuna and Adamson, the major pigment changes associated with ripening proses were 

decreasing the chlorophyll and the massive accumulation of carotenes [28]. 

Modelling of FFB ripeness uses stepwise approach for variable selection, starts by selecting the 

most discriminating variable and add new variable in stepwise manner, a combination of forward selection 

and backward elimination. To found the most discriminative variable, F-test is performed at each step of the 

process. In this study, for the selection of LED wavelength set at 0.05 for the inclusion variable and 0.1 for 

removal variable. A summary of the results from stepwise procedure, including the wavelength selection 

presented in Table 1. This wavelength was selected as the most important wavelength for discriminating 

between treatment. Different wavelength obtained for classification based on FFB oil content. Only 660 nm 

LED include to the model. Using linear discriminant analysis (LDA) with Mahalanobis distance, model 

accuracy 79.8% and 88.2% was obtained for model that generated based on grader evaluation and FFB oil 

content, respectively. This model was used for evaluating FFB quality from smallholder and accuracy 

obtained by 52.1% and 66.7% for external feature criteria and FFB oil content, respectively. Model that 

generated based on FFB oil content showed higher rate of accuracy. 
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Figure 5. Box-and Whisker plots representing relative reflectance voltage value of ripe 

and unripe palm oil fresh fruit bunches 

 

 

Table 1. Variables in the analysis 
LED Wavelengths (nm) Tolerance Sig. of F to Remove Min. D Squared 

LED 765 nm 1.000 .000  

LED 765 nm .619 .000 .078 

LED 680 nm .619 .000 .883 

LED 765 nm .152 .000 .954 

LED 680 nm .558 .000 .930 

LED 890 nm .201 .016 2.076 

LED 765 nm .150 .000 1.061 

LED 680 nm .036 .001 2.039 

LED 890 nm .201 .014 2.293 

LED 660 nm .040 .046 2.419 

 

 

Ripe FFB correlated with higher oil yield than unripe FFB, but in the Figure 6 showed that grader 

tends to underestimate main plantation FFB oil yield and overestimate smallholder FFB oil yield. Grader 

misclassified 4 out of 17 FFB as ripe FFB but with low oil content and misclassified 7 out of 16 FFB as 

unripe but with high oil content. Internal quality of FFB hardly determined only from visual inspection. 

Different classification algorithm was used to get better accuracy. K-NN is a distance based method 

in which the training dataset is stored so that a new record may be classified by comparing it with the most 

similar records in the training set. The number of nearest neighbors tested ranged from 3 to 5. The k value 

used for analysis was set to a maximum 5 which was the number that appeared more frequently in the cross-

validation tests. Euclidean distance used to measure similarity. All predictors are standardized to guarantee 

measured on the same scale. For k-NN model based on grader evaluation, 3 selected predictors was LED 

660, 615, and 830 nm with k = 5. For built model based on FFB oil content criteria, 2 predictors were 

selected, 635 and 615 nm. The accuracy for both model were 80.7% and 88.2%, respectively. 

Table 2 displays the overall classification accuracies achieved by the two classification methods 

used in this study. Training dataset was built from FFB from main plantation and tested to FFB sample from 

smallholders. Classification model generated from FFB oil content data showed more accurate result 

compared to model generated from visual inspection 66.7% compared to 52.1%. Thus indicating that FFB oil 

content was more robust variable for evaluating variant of palm oil FFB than external feature such as colour 

and number of detach fruit. 
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Figure 6. Comparison of ripeness estimation and fresh fruit bunches oil content 

 

 
Table 2. Average classification accuracies using discriminant and KNN classifier 

for palm oil fresh fruit bunch quality prediction based on grader evaluation and oil content 

Class 
Linear Discriminant Analysis k Nearest Neighbour 

Calibration Validation Calibration Validation 

Classification based on Grader Evaluation 

Overall 79.8 52.1 80.7 62 

Unripe 67.3 51 69.2 68 

Ripe 91.2 54 91.2 50 

Classification based on FFB Oil Content 

Overall 88.2 66.7 88.2 50 

<17.5% 100 55.6 75 33.3 

>=17.5% 84.6 100 92.3 100 

 

 

4. CONCLUSION  

The combination of visible and near infrared spectrum in this sensor system can potentially use to 

determining palm oil fresh fruit bunch quality. Learning algorithm can be built based on external feature and 

internal quality of palm oil FFB. Learning algorithm based on FFB oil content have better performance for 

classification variety of palm oil FFB and represent better quality as potential oil extraction rate. The 660 nm 

LED is choosen to be used to estimate the oil content of FFB. Using linear discriminant analysis (LDA) with 

Mahalanobis distance, the accuracy of the systems is 79.8% and 88.2%. From 33 FFB oil content 

measurement, grader misclassified 4 out of 17 FFB as ripe FFB but with low oil content (<17.5%) and 

misclassified 7 out of 16 FFB as unripe but with high oil content (>=17.5%). Classifying model build from 

FFB from main plantation then tested to evaluate FFB from smallholder. Classification model generated from 

FFB oil content data showed more accurate result compared to model generated from visual inspection 

66.7% compared to 52.1%. Model accuracies attained by Discriminant Analysis (DA) and k-Nearest 

Neighbors (k-NN) were 79.8% and 80.7%, respectively based on grader evaluation. Model accuracies based 

on FFB oil content was 88.2% for both classifying algorithms. 
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