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ABSTRACT

Path analysis is a method for identifying and analyzing direct and indirect relationship be-
tween independent and dependent variables. This method was developed by Sewal Wright
and initially only used correlation analysis results in identifying the variables’ relationship.
So far, path analysis has been mostly used to deal with variables of non-spatial data type.
When analyzing variables that have elements of spatial dependency, path analysis could re-
sult in a less precise model. Therefore, it is necessary to build a path analysis model that
is able to identify and take into account the effects of spatial dependencies. Spatial auto-
correlation and spatial regression methods can be used to enhance path analysis to identify
the effects of spatial dependencies. This paper proposes a method derived from path analy-
sis that can process data with spatial elements and furthermore can be used to identify and
analyze the spatial effects on the data; we call this method spatial path analysis.
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1. INTRODUCTION
Path analysis is a problem-solving method with statistical approach developed by Sewal Wright in 1921 [1, 2].

It can be used to parse and explain relationship or effects between independent (exogenous) variables and a dependent
(endogenous) variable involved in a particular problem. Path analysis is able to deliver results in the form of a diagram
that represents the relationship between the variables, either by direct or by indirect correlation, so that the total effect
can be calculated with statistical approach in the form of a causal or structural model [1, 3, 4, 2]. The usual approaches
for path analysis are correlation and regression [5, 6]. Some studies have made use of path analysis, among others: the
identification of the effect of motivation on math score achievement in reformation-based curriculum [7], the measure-
ment of the effect of e-government utilization on the profits of business ventures in Dubai [8], and the identification
of the effects of job stress (time stress and anxiety), job satisfaction, and work motivation on Occupational Health and
Safety Administration (OSHA) in Texas [9].

It is interesting to study how path analysis can be used to calculate or process spatial data. Spatial data are a
type of data taken in a specific location; thus, they may contain attributes and location information, and hence a kind
of dependent data [10]. Spatial analysis is a quantitative analysis that involves spatial data, which include a pattern of
dots, lines, areas, etc. in the form of maps and coordinates in two or three-dimensional spaces [11]. The spatial effects
in data attributes that geographically have relevance must be identified based on the spatial pattern description and
relationships [11, 12]. The spatial effects cause the appearance of spatial dependence. Spatial dependency becomes
a very important issue in determining the accuracy of the correlation analysis and the regression model built. To
produce a proper correlation analysis and regression model we must consider the effects of spatial dependencies in
cases that have a spatial tendency, because the regression model will be considered invalid if we ignore the existing
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spatial effects. Path analysis, therefore, needs to consider the spatial effects on variables that are calculated, so that the
resulting model has a better accuracy.

Two statistical approaches commonly used in spatial analysis are spatial autocorrelation and spatial regres-
sion. Given a set S containing n geographical units, spatial autocorrelation refers to the relationship between some
variables observed in each of the n localities and a measure of geographical proximity defined for all n(n − 1) pairs
chosen from n [13]. Spatial autocorrelation has been used to analyze the pattern of migratory attack of brown plant
hoppers (nilaparvata lugens) in Boyolali, Klaten, Sragen, and Karanganyar districts in Indonesia [14]. Additionally,
spatial autocorrelation has also been used to determine the risk factors for outbreaks of Highly Pathogenic Avian In-
fluenza (HPAI) in Bangladesh [15]. Spatial regression, on the other hand, is widely used to identify and examine the
magnitude of spatial effects between independent variables and a dependent variable [16, 17]. Spatial regression is
a method for analyzing the relationship between an outcome of dependent variable Y and one or more independent
variables X and allows for spatial dependence in their observations [18]. Spatial regression can be identified by de-
tecting the condition of spatial dependency based on the error (residual) from the regression model that is initially
formed [19].

Spatial autocorrelation and spatial regression have been used to identify patterns of relationship and levels of
influence between several regions for some particular variables. Spatial autocorrelation, however, is only capable to
identify patterns of relationship that occur, while spatial regression produces values of coefficients (β) that describe the
magnitude of the direct influence of independent variables on the dependent variable. Several things cannot be done
with this approach, namely how to identify the indirect effects of the independent variables on the dependent variable
to produce the total effect, and how to build a model that is able to combine the results of spatial autocorrelation and
spatial regression. Spatial path analysis is needed to identify the direct and indirect effects so that the total effects
between variables, based on the calculation of spatial autocorrelation and spatial regression, that make up the causal
(structural) model can be studied.

This study develops a method derived from path analysis to unravel the relationship and effects between
variables to identify the spatial effects that occur. Previously this cannot be accomplished by the standard path analysis
method. We call this new method spatial path analysis. To demonstrate the feasibility of the proposed method, we
apply it to analyze the spatial effects in determining rice productivity and harvest area based on several factors, namely
area of the region, rainfall, water spring, rice field area, and population. The end result of this study is expected to
produce a spatial model that is able to identify and analyze the effects of each independent variable towards the
dependent variable by involving the spatial elements therein.

2. PATH ANALYSIS
Path analysis uses correlation and regression analyses to explain the relationship between the observed vari-

ables. Many problems in computer science have made use of statistical approaches based on correlation and regres-
sion [20, 21]. This analysis computes direct and indirect effects between independent and dependent variables to
produce a total effect in the form of structural equations. The stages of path analysis are depicted in Figure 1.

2.1. Path model

Path analysis begins with determining a path model, which describes relationship between independent and
dependent variables. A path model determines a causal model between the variables based on a hypothesis that
represents the causals that have been formulated in the path analysis. The causal model is constructed based on a
theory or the results of previous research concerning relationship of the variables used in the study. Figure 2 shows
several examples of path models.

Figure 2(A) shows the relationship among variables X1, X2 and Y, where X1 directly affects X2 and X2
directly affects Y, but X1 only indirectly affects Y. Figure 2(B) shows that both X1 and X2 directly affect Y, but X1
and X2 do not affect each other. Figure 2(C) illustrates that X1 directly affects Y and X1 also indirectly affects Y
through X2. Figure 2(D) shows that X1 and X2 directly affect Y and X1 and X2 correlate.

2.2. Path coefficients

Path coefficients are values obtained from carrying out correlation and regression analyses on the independent
and dependent variables in the path model [6, 22]. As shown in Figure 2, every variable has relationship which is
depicted by arrows to one or more variables. Figure 2(D) also shows that variable X1 correlates with variable X2, while
variables X1 and X2 have regressional relationship toward variable Y. Coefficient values produced by correlation or

Development of a Spatial Path-Analysis Method for Spatial Data Analysis (Sulistyo, Subanar, and Pulungan)



2458 ISSN: 2088-8708

Determining Path Model

Determining Path Coefficients

Correlation Analysis Regression Analysis

START

Significance and Goodness-of-fit 

Test

Trimming Process

Calculating

Direct/Indirect/Total Effects

Significant? No

Yes

New Path Model

Structural Equations

Path Coefficients 

Independent Variables X: 

xi1, xi2, xij, ..., xin 

(i=1,2, .., m; j=1,2, .., n)

Dependent Variables y: 

y1, y2, ..., yn

END

Input Variables

Figure 1. The stages of path analysis

X1 X2 Y

X1

X2

Y

X1

X2

Y

X1

X2

Y

(A) (B)

(C) (D)

e2

e1 e2

e1

e1

e1

Figure 2. Examples of path models [1]

regression calculation are called path coefficients. Therefore, every relationship of several variables in the path model
will have a value called a path coefficient.

In this research, some of the path coefficients are obtained by the Pearson correlation equation. Regression
analysis, on the other hand, is used to measure the degree of the influence of independent variables toward a dependent
variable. One of the methods used to conduct regression analysis is ordinary least squares (OLS) [16, 23, 24, 25]. In
this research, some of the path coefficients are obtained by using ordinary least squares.
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Furthermore, a significance test is performed to measure the level of significance of each path coefficient
value to ensure that the path coefficient formed is significant. This significance testing uses partial test (e.g., t-test)
and simultaneous test (e.g., F-test). Beside t-test and F-test, a testing for goodness-of-fit is also performed, which
uses coefficient of determination (R2). Based on the resulting significance level of the path coefficients, a trimming
process is carried out to produce a path diagram that consists only of paths that have significant values and to cut away
all paths that are not significant.

2.3. Structural equations

The final process of the path analysis is the resulting identification of the effects of independent variables on
the dependent variable. The relationship between the variables is described in the form of structural equations. The
structural equations are constructed by calculating the direct effects (DE), indirect effects (IE), and the total effect
(TE) between the variables [1]. The values of DE, IE, and TE are determined based on the path coefficients.

3. SPATIAL ANALYSIS
Spatial analysis is applied to obtain a more accurate equation model by fixing the errors of data observation.

Spatial analysis considers the spatial effects during data observation. Spatial analysis is used to analyze objects
(variables) of the research associated with geographic oriented data. Spatial data contains information of a location
(coordinates) and the attributes that exist in it. Spatial autocorrelation and spatial regression are approaches that can
be used to analyze spatial connectivity.

3.1. Neighborhood analysis

Neighborhood analysis is the process of identifying two or more regions of spatial interaction that intersect
each other. Identification of spatial relationships is expressed in the spatial-weights matrix W. There are several
methods that can be used for this analysis, among them distance method and contiguity method. For distance method,
several approaches can be used to identify relationship between regions expressed as latitude and longitude, namely
power function, negative exponential function and general spatial weights. For contiguity method, on the other hand,
queen, castle, or bishop contiguity approaches can be used to identify the environmental relationship [26]. The choice
of methods depends on the case study and in this paper, we choose queen contiguity. An area that intersects another
area will have a value of 1, while an area that does not intersect will have a value of 0 [27]. The set of intersection
values between these areas forms a matrix called spatial-weights matrix W. In practice, some methods standardize
this spatial-weights matrix to obtain Ws. The result of neighborhood analysis becomes the basis for the calculation
of spatial autocorrelation and spatial regression.

3.2. Spatial autocorrelation

Spatial autocorrelation is an analysis of the correlation between the observed regions (spaces) in the form
of spatial patterns (patterns of distance, time and area) [28]. On the determination of spatial units (neighborhood
analysis), spatial autocorrelation will identify the pattern of spatial relationship based on a certain variable. There are
several statistical approaches commonly used to measure the spatial autocorrelation, such as Moran’s I [29], Geary’s
C [30] and the Getis-Ord statistics [31]. In this study, the approach we use to measure the spatial autocorrelation is
Getis-Ord statistics (G∗

i ). Getis-Ord uses a statistical approach to measure the spatial relationship/correlation by using
a matrix based on the intersection of the regions. Getis-Ord statistical method is also used to measure whether the data
concentration value is high or low in a specific area [32].

3.3. Spatial regression

Spatial regression measures the effect of an independent variable towards the dependent variable by identi-
fying the spatial effect. General spatial model (GSM) is a linear regression that incorporates the elements of spatial
effect into the model. In general, GSM can be written as [16, 23, 25]:

~y = ρWs~y +X~β + ~u, ~u = λWs~u+ ~e, (1)

where ~y represents the dependent variable and X represents the independent variables in the form of a matrix contain-
ing explanatory variables (n× p), ~u is the error vector (residual) on the spatial autoregressive model (SAR), Ws is a
spatial-weights matrix of standardized queen contiguity, ρ is a coefficient of the spatially lagged dependent variables
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Ws~y, ~β is the regression coefficients, which describe the influence of the independent variables (X) to the dependent
variable (~y), λ is the error coefficient value of spatially autocorrelated Ws, and ~e is the error vector (residual) in the
equation of the spatial autoregressive error model (SER). To carry out this spatial regression, several stages must be
completed, namely Moran’s test, Lagrange multiplier (LM) and maximum likelihood (ML).

Moran’s test One approach that can be used to test spatial dependency is Moran’s test (ZI) [27, 16, 33]. Moran’s
test is used to measure the significance level of the result of Moran’s I calculation. Moran’s I statistic shows the spatial
autocorrelation in residual least squares. The Moran’s test uses standardized spatial-weights matrix (Ws) to perform
the calculations [27]. This test is conducted based on the residual value ε of OLS. The value of Moran’s I statistic
will be tested to find out its level of significance. From the result of the Moran’s test, the existence of the spatial
dependence of the variable can be ascertained.

Lagrange multiplier The next test for the spatial dependency is to determine the appropriate spatial regression
equation. This process is performed by using Lagrange multiplier. Lagrange multiplier test consists of spatial error
dependency (LMerror) and spatial lag dependency (LMlag). Lagrange multiplier performs calculations based on the
least-squares residual (OLS) involving spatial-weights matrix (Ws). Anselin in [16] formulated the equations to test
spatial lag (LMlag), while Burridge in [34] constructed the equations to test spatial error model (LMerror) [17].

Maximum likelihood In order to calculate the spatial regression we need to determine the values of ρ and λ in the
spatial regression equation. In this study, maximum likelihood method is used to obtain these values [16].

4. PROPOSED APPROACH
Basically, the spatial path analysis we now develop is based firmly on the previous path analysis method.

The development of the spatial path analysis emphasizes on the spatial process approach involving statistical methods
to identify and analyze the spatial effects on variables. In consequence, changes occur in the calculation of the path
coefficients. In spatial path analysis there are additional variables, i.e., maps. A map is a spatial data variable that
contains an image and attributes. It is in the form of files consisting of shapefile shape (*.shp), shapefile shape index
(*.shx) and shapefile attribute (*.dbf).

The stages of the spatial path analysis are depicted in Figure 3, which are further described as follows:

Stage 1 Specifying the path model on the basis of a hypothesis that represents the formulated causals, so that the
independent (X) and dependent (~y) variables will be identified in the path model [5].

Stage 2 After the path model is specified, neighborhood analysis is carried out. In this study, the method used to
identify the neighborhood is queen contiguity. A spatial-weights matrix is produced to calculate the spatial
autocorrelation and identify the spatial dependence. Unstandardized spatial-weights matrix is used to calcu-
late the spatial autocorrelation (Getis-Ord), whereas the spatial-weights matrix is used for calculating spatial
dependency (Moran’s test).

Stage 3 Performing spatial autocorrelation analysis. At this stage, measurement is performed to determine the strength
of the relationship between regions based on the variables used. The method used to analyze the spatial auto-
correlation is Getis-Ord statistic. Calculation of the Getis-Ord statistics will generate G∗

i value for each region
against other regions based on the variables analyzed. The correlation ofG∗

i values for each of these variables is
then calculated using Pearson correlation. The correlation coefficients produced will be used as path coefficients
that represent the values of the correlation between the analyzed variables.

Stage 4 Performing spatial regression analysis. At this stage, the calculation of regression equation is performed based
on the model that has been built to identify causal relationship that occurs. This phase calculates linear regression
with ordinary least squares to generate the regression model. Furthermore, identifying the spatial dependency
using Moran’s test is based on the residual value (ε) of regression model that has been formed. As a result, if
there is a spatial dependency, the process of determination of spatial analysis models uses Lagrange multiplier
test. If there is no spatial dependency, the coefficients in the regression models that have been produced by OLS
will be used as path coefficients on path analysis. Spatial regression models will be determined by the values
of ρ and λ generated by calculating LMlag and LMerror. The result of calculating LMlag and LMerror will
determine one of such spatial regression models as SEM , SER, and SGM .

Stage 5 After acquiring spatial regression model, the next stage is determining the values of spatial regression coeffi-
cients (ρ and λ) by using maximum likelihood method.
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Figure 3. The stages of spatial path analysis

Stage 6 Specifying the path coefficients based on the values of correlation coefficients and regression coefficients.
Furthermore, significance tests on the path coefficients are performed using t-test and F-tests as well as a
goodness-of-fit test on the regression model based on the values of coefficients.

Stage 7 The next process is forming a structural equation model based on the previous coefficients of path analysis
model at Stage 6. At this stage, direct effects and indirect effects are identified to calculate the total effects.

The final result of the spatial path analysis is a structural equation expected to identify the effects of indepen-
dent variables toward the dependent variable by considering the spatial effects that occur in the model.

5. PROOF OF CONCEPT
Klaten is a regency in Central Java province in Indonesia. Klaten has one of the highest rice productivities

in the province. Its total area is 65,556 hectares divided into 26 subdistricts with 39,692 hectares of agricultural land.
Geographically, Klaten exhibits very good potentials in agriculture because it has numerous water sources and rainfall
of 1,682 mm (year 2015) and most of its area is low land. It is interesting to investigate whether rice productivity and
harvest area in Klaten are affected by area, rice field area, rainfall, water source and population.

In this section, we will demonstrate how to use spatial path analysis to identify direct and indirect effects on
the dependent variables, namely rice productivity and harvest area in Klaten, based on independent variables, namely
area, rainfall, water source and population. Issues that will be analyzed include:
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1. Is there any effect of the area, rainfall and water source variables toward rice productivity?

2. Is there any indirect effect of the rainfall variable towards rice productivity through water source variable?

3. Is there any effect of the area, rainfall, water source, and rice field area variables toward the harvest area?

4. Is there any indirect effect of the rainfall variable towards harvest area through water source variable?

Based on the problems that have been proposed, a path model is constructed as shown in Figure 4.

Area

Rainfall

Water Source

Population

Rice Productivity

Harvest Area

e

e
e

Figure 4. Path model of the case study

In the following, we are going to apply spatial path analysis to identify the inter-variable effects as previously
described. This identification process involves the existing spatial effects. Neighborhood analysis produces identi-
fication of spatial units based on subdistrict areas as indicated by polyID for each of the 26 subdistricts. Figure 5
shows the map of Klaten and also depicts the result of neighboring identification for each of its subdistricts by using
queen contiguity method. This enables us to determine each subdistrict’s neighboring subdistricts. The red lines rep-
resent that a subdistrict is in a neighborhood with other subdistrict(s). The number on each subdistrict indicates its
code (PolyID). The result of this identification is then represented in a spatial-weights matrix for subsequent spatial
process.

 

Figure 5. The result of neighborhood identification with queen contiguity approach

Further analysis of spatial correlation is then performed by applying Getis-Ord computation, whose result
is depicted in Figure 6. Three variables are analyzed, namely population, rainfall and area. The Getis-Ord spatial
autocorrelation aims to identify spatial tendency of each area based on those variables. This process identifies areas
with hot-spot status (high values) that exhibit spatial tendency and areas with cold-spot status (low values) that do not
exhibit spatial tendency. Figure 6 shows color difference to indicate the difference of the areas’ status, where red color
represents areas with hot-spot status while blue color represents areas with cold-spot status.

It can be observed that variables rainfall and area are visible in areas with hot-spot status, i.e., subdistricts
that are neighboring to each other. Areas with dark red color exhibit hot-spot concentration toward their neighboring
areas. Meanwhile, areas with hot-spot status tend to disperse for the population variable.

Beside color that represents status, Figure 6 also depicts values produced from Getis-Ord computation (G∗
i )

for each subdistrict. Based on these results, it can be concluded that there exists spatial tendency (hot-spot) in several
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Figure 6. The results of Getis-Ord spatial autocorrelation on: (A) population, (B) rainfall, and (C) area

subdistricts that spatially intersect; and hence they are visually clustered. These conditions exist for rainfall and area
variables. On the other hand, for population variable, areas with spatial tendency (hot-spot) are visually dispersed into
three groups.

For spatial path-analysis computation, the spatial autocorrelation value (G∗
i ) for each subdistrict will be

correlated to produce inter-variable correlation values. The correlation results generate the path coefficient values
of the variables. Table 1 shows the Pearson correlation analysis result between G∗

i values of the three variables,
population, rainfall, and area.

Table 1. The result of Pearson correlation analysis and the corresponding significance

Variables Population Rainfall Area
Population 1.0000 ***0.8693 ***0.8181
Rainfall ***0.8693 1.0000 ***0.6168
Area ***0.8181 ***0.6168 1.0000

Significance (p-value): *** = 0.001, ** = 0.01, * = 0.05.

More specifically, the Pearson correlation between the G∗
i values of the area and rainfall variables is 0.6168

(strong) with statistical significance (p-value) of 0.001 (***), indicating very significant. Similarly, the correlation
between area and population variables is 0.8181 (very strong) with statistical significance of 0.001 (***), which
indicates very significant. These imply that there are positive relationships between spatial autocorrelation G∗

i values
of area and rainfall variables as well as between those of area and population variables. These further suggest that an
increase in area variable will also increase rainfall and population variables, although this does not necessarily indicate
causal relationships between area variable (explanatory variable) and rainfall and population variables (dependent
variables).

Next, the spatial regression estimation is performed; this aims to find the effect of a certain variable on other
variables based on the existing spatial effect. As previously described in the computational stage (Figure 3), we run
the spatial dependency test based on the residual values of the OLS regression. We use Moran’s test for our spatial
dependency test. Based on the Moran’s test, we find that, in general, all regression residuals (εi) exhibit significant
spatial autocorrelation; this is shown in Table 2. This result explains that there exist spatial dependence elements in
the regression residuals (εi).

Based on the test result shown in Table 2, we can determine the appropriate spatial regression model that
exhibits significant result for each estimation. We use Lagrange multiplier test for spatial error dependence (LMerr)
and Lagrange multiplier test for spatial lag dependence (LMlag) to determine our spatial regression model. Based on
the significance tests, we find that the appropriate spatial regression model is spatial lag model. Table 3 shows the
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Table 2. The result of Moran’s I test and the corresponding significance

Variables Rice Productivity Harvest Area
Population **0.2419 *0.2394
Rainfall **0.2668 *0.2694
Area **0.2187 **0.2180
Water Source *0.1901 *0.1878

Significance (p-value): *** = 0.001, ** = 0.01, * = 0.05.

intercept coefficient (β1), the regression coefficient (β2), and the spatial coefficient (ρ) of our spatial regression model
generated by the spatial lag model estimation.

Table 3. The result of spatial lag model’s calculation

Variables Rice Productivity Harvest Area Water Source
β1 β2 ρ β1 β2 ρ β1 β2 ρ

Population - - - 1397.4000 -0.0012 0.4535 - - -
Rainfall -987.4485 4.6927 0.4652 -190.2105 0.8554 0.4696 3.4457 0.0007 0.2722
Area 6943.8063 0.2715 0.4362 1234.0000 0.0607 0.4382 - - -
Water Source 7771.5680 -25.1690 0.4380 1412.8930 -5.0441 0.4411 - - -

In the next step, we develop a path model based on the spatial correlation and the regression estimation,
which generates a diagram depicted in Figure 7.
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Harvest Area

e

e
e

0.2715
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0.0015
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0.6168

0.8181

Figure 7. The magnitude of the path coefficients for the variables’ relationships

As a result, based on the total effect, we further obtain the following structural equation that represents the
relationships between rice productivity (Y1) variable and harvest area (Y2) variable with area (X1), rainfall (X2),
water source (X3), and population (X4) variables:

Y1 = 3.1660X1 + 9.5341X2 + (−25.1690)X3, (2)
Y2 = 0.1213X1 + 4.1551X2 + (−5.0441)X3 + 0.0484X4. (3)

It then can be concluded that rice productivity is affected by area by 3.1660, by rainfall by 9.5341, and by water source
by -25.1690. Meanwhile, harvest area is affected by area by 0.1213, by rainfall by 4.1551, by water source by -5.0441,
and by population by 0.0484.

In order to show more closely how all independent variables influence the dependent variable (based on the
resulting structural equations), we show the values of all variables side by side in Figure 8 and Figure 9. The x-axis
of both charts in the figures represents subdistricts, while the y-axis represents the values of all independent variables
(X1, X2, X3, X4) and dependent variable Y1 (for Figure 8) and dependent variable Y2 (for Figure 9).

Based on the results of the first structural equation shown in Figure 8, rainfall (X2) exhibits the greatest
contribution that affects rice productivity (Y1), implying that higher rainfall increases rice productivity. The second
greatest contribution that affects rice productivity comes from area (X1). As can be seen from the graphical pattern in
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the figure, area also supports rice productivity when rainfall drops. For example, this can be indicated at subdistricts 4
and 23. On the contrary, conditions at subdistricts 7, 8, and 25 indicate the cases when low value of area is supported
by higher rainfall. Next, although water source (X3) has greater coefficient value (−25.1690), the fact that it has
small value in each area in Klaten makes its contribution to rice productivity less significant. Overall, these results
indicate that the most dominant factor in determining rice productivity in Klaten is rainfall, with area also supporting
the rainfall’s contribution.
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Figure 8. Chart showing how area, rainfall, water source, and population influence rice productivity

-5000

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

V
al

u
e 

Subdistricts 

Harvest Area 

Area (X1) Rainfall (X2) Water Source (X3) Population (X4) Harvested Area (Y2)

Figure 9. Chart showing how area, rainfall, water source, and population influence harvest area

Figure 9 depicts the results of the second structural equation, namely harvest area (Y2). Harvest area is heavily
affected by rainfall (X2), with population exhibiting the second largest effect. It can be seen that large population of
subdistricts 6, 9, 13, and 22 compensates relatively low rainfall condition to sustain harvest area. Meanwhile, areas
with relatively low population are supported by high rainfall level in sustaining their harvest area, such as subdistricts
8 and 24. However, area (X1) and water source (X3) exhibit small effects on harvest area. This indicates that
subdistricts’ areas are not necessarily associated with appropriate environment for rice fields. Similarly, relatively
small water source conditions in each area causes water source to have small effect on harvest area. Overall, these

Development of a Spatial Path-Analysis Method for Spatial Data Analysis (Sulistyo, Subanar, and Pulungan)



2466 ISSN: 2088-8708

results suggest that the most dominant variable in determining harvest area in Klaten is rainfall, with population also
supporting the rainfall’s contribution.

Path analysis without spatial analysis For comparison, we also perform path analysis without considering spatial
influences, namely by carrying out the method depicted in Figure 1. Figure 10 shows the resulting path diagram and
path coefficients produced by this path analysis. The difference between the results of path analysis and spatial path
analysis (as shown in Figure 7) is readily observable. This difference stems mainly from the changes to the variables
with the greatest contribution toward rice productivity and harvest area. Other experiments we have conducted also
indicate that spatial path analysis produces models that are more consistent than path analysis. This means that spatial
dependence is an important factor in path analysis. Proper identification of spatial dependence on the measurement of
data results in a more accurate model.

Area

Rainfall

Water Source

Population

Rice Productivity

Harvest Area

e

e
e

0.8653

0.0481

-124.6000

0.1702

-0.0046

-23.8400

0.8770
-0.0002

-0.0202

0.3985

Figure 10. Path coefficients obtained only through path analysis

6. CONCLUSION
Spatial path analysis is capable of identifying possible spatial effects on variables of interest. The ability

of path analysis in disentangling inter-variable relations, both direct and indirect effects, allows one to identify the
degree of contribution of each variable toward other variables. Including spatial analysis into path analysis produces
structural equations that take existing spatial effects into account. As a consequence, spatial path analysis is supposed
to generate better results for cases that involve variables that exhibit spatial tendency.
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